DEVELOPMENT OF THE PROTO-KNEE TOOL USING MACHINE LEARNING ALGORITHMS TO PREDICT CLINICAL OUTCOMES AFTER TOTAL KNEE ARTHROPLASTY

被引:0
|
作者
Zhou, Y. [1 ]
Schilling, C. [1 ]
Dowsey, M. [1 ]
Choong, P. [1 ]
机构
[1] Univ Melbourne, Melbourne, Vic, Australia
关键词
D O I
暂无
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
100
引用
收藏
页码:S84 / S84
页数:1
相关论文
共 50 条
  • [1] Development of Machine Learning Algorithms to Predict Patient Dissatisfaction After Primary Total Knee Arthroplasty
    Kunze, Kyle N.
    Polce, Evan M.
    Sadauskas, Alexander J.
    Levine, Brett R.
    [J]. JOURNAL OF ARTHROPLASTY, 2020, 35 (11): : 3117 - 3122
  • [2] Using Unsupervised Machine Learning to Predict Quality of Life After Total Knee Arthroplasty
    Hunter, Jennifer
    Soleymani, Farzan
    Viktor, Herna
    Michalowski, Wojtek
    Poitras, Stephane
    Beaule, Paul E.
    [J]. JOURNAL OF ARTHROPLASTY, 2024, 39 (03): : 677 - 682
  • [3] Machine learning algorithms predict extended postoperative opioid use in primary total knee arthroplasty
    Klemt, Christian
    Harvey, Michael Joseph
    Robinson, Matthew Gerald
    Esposito, John G.
    Yeo, Ingwon
    Kwon, Young-Min
    [J]. KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2022, 30 (08) : 2573 - 2581
  • [4] Machine learning algorithms predict extended postoperative opioid use in primary total knee arthroplasty
    Christian Klemt
    Michael Joseph Harvey
    Matthew Gerald Robinson
    John G. Esposito
    Ingwon Yeo
    Young-Min Kwon
    [J]. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30 : 2573 - 2581
  • [5] To Predict the Length of Hospital Stay After Total Knee Arthroplasty in an Orthopedic Center in China: The Use of Machine Learning Algorithms
    Han, Chang
    Liu, Jianghao
    Wu, Yijun
    Chong, Yuming
    Chai, Xiran
    Weng, Xisheng
    [J]. FRONTIERS IN SURGERY, 2021, 8
  • [6] The development of machine learning algorithms that can predict patients satisfaction using baseline characteristics, and preoperative and operative factors of total knee arthroplasty
    Nam, Hee Seung
    Ho, Jade Pei Yuik
    Park, Seong Yun
    Cho, Joon Hee
    Lee, Yong Seuk
    [J]. KNEE, 2023, 44 : 253 - 261
  • [7] Utilization of machine learning methods for predicting surgical outcomes after total knee arthroplasty
    Mohammed, Hina
    Huang, Yihe
    Memtsoudis, Stavros
    Parks, Michael
    Huang, Yuxiao
    Ma, Yan
    [J]. PLOS ONE, 2022, 17 (03):
  • [8] Machine Learning Algorithm to Predict Worsening of Flexion Range of Motion After Total Knee Arthroplasty
    Saiki, Yoshitomo
    Kabata, Tamon
    Ojima, Tomohiro
    Okada, Shogo
    Hayashi, Seigaku
    Tsuchiya, Hiroyuki
    [J]. ARTHROPLASTY TODAY, 2022, 17 : 66 - 73
  • [9] Clinical outcomes of unicompartmental knee arthroplasty and total knee arthroplasty in the same patient
    Hao, Yu
    Li, Jia
    Feng, Yamei
    Huang, Haiyang
    Dong, Wei
    Liu, Guobin
    [J]. ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY, 2024,
  • [10] Clinical Outcomes After Simultaneous Bilateral Total Knee Arthroplasty Comparison to Unilateral Total Knee Arthroplasty and Healthy Controls
    Zeni, Joseph A., Jr.
    Snyder-Mackler, Lynn
    [J]. JOURNAL OF ARTHROPLASTY, 2010, 25 (04): : 541 - 546