The Weak Lefschetz Property of Artinian Algebras Associated to Paths and Cycles

被引:0
|
作者
Nguyen, Hop D. [1 ]
Tran, Quang Hoa [2 ]
机构
[1] VAST, Inst Biotechnol, 18 Hoang Quoc Viet, Hanoi 10072, Vietnam
[2] Hue Univ, Univ Educ, 34 Loi St, Hue City, Vietnam
关键词
Artinian algebras; Edge ideals; Independence polynomials; Weak Lefschetz property; MONOMIAL COMPLETE-INTERSECTIONS; IDEALS; SYSTEMS; NUMBERS; POWERS;
D O I
10.1007/s40306-024-00549-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a base field k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Bbbk $$\end{document} of characteristic zero, for each graph G, we associate the artinian algebra A(G) defined by the edge ideal of G and the squares of the variables. We study the weak Lefschetz property of A(G). We classify some classes of graphs with relatively few edges, including paths and cycles, such that its associated artinian ring has the weak Lefschetz property.
引用
收藏
页码:523 / 544
页数:22
相关论文
共 50 条