Weak Lefschetz property and stellar subdivisions of Gorenstein complexes

被引:0
|
作者
Boehm, Janko [1 ]
Papadakis, Stavros Argyrios [2 ]
机构
[1] Univ Kaiserslautern, Dept Math, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
来源
关键词
KUSTIN-MILLER UNPROJECTION; IDEALS; RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume sigma is a face of a Gorenstein* simplicial complex D, and k is an infinite field. We investigate the question of whether the Weak Lefschetz Property of the Stanley-Reisner ring k[D] is equivalent to the same property of the Stanley-Reisner ring k[D-sigma] of the stellar subdivision D-sigma. We prove that this is the case if the dimension of sigma is big compared to the codimension.
引用
收藏
页码:266 / 287
页数:22
相关论文
共 50 条
  • [1] THE LEFSCHETZ PROPERTY FOR BARYCENTRIC SUBDIVISIONS OF SHELLABLE COMPLEXES
    Kubitzke, Martina
    Nevo, Eran
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (11) : 6151 - 6163
  • [2] On the Weak-Lefschetz property for Artinian Gorenstein algebras
    Ragusa A.
    Zappalà G.
    Rendiconti del Circolo Matematico di Palermo, 2013, 62 (2) : 199 - 206
  • [3] The weak Lefschetz property for Artinian Gorenstein algebras of codimension three
    Miro-Roig, Rosa M.
    Quang Hoa Tran
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (07)
  • [4] On the Weak Lefschetz Property for artinian Gorenstein algebras of codimension three
    Boij, Mats
    Migliore, Juan
    Miro-Roig, Rosa M.
    Nagel, Uwe
    Zanello, Fabrizio
    JOURNAL OF ALGEBRA, 2014, 403 : 48 - 68
  • [5] Stellar subdivisions and Stanley-Reisner rings of Gorenstein complexes
    Boehm, Janko
    Papadakis, Stavros Argyrios
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 55 : 235 - 247
  • [6] The weak Lefschetz property of Gorenstein algebras of codimension three associated to the Apery sets
    Miro-Roig, Rosa M.
    Quang Hoa Tran
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 604 : 346 - 369
  • [7] Unique maximal Betti diagrams for Artinian Gorenstein k-algebras with the weak Lefschetz property
    Richert, Ben
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (06) : 2368 - 2385
  • [8] THE STRENGTH OF THE WEAK LEFSCHETZ PROPERTY
    Migliore, Juan
    Zanello, Fabrizio
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (04) : 1417 - 1433
  • [9] INTERPOLATION AND THE WEAK LEFSCHETZ PROPERTY
    Nagel, Uwe
    Trok, Bill
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (12) : 8849 - 8870
  • [10] Laplace Equations and the Weak Lefschetz Property
    Mezzetti, Emilia
    Miro-Roig, Rosa M.
    Ottaviani, Giorgio
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (03): : 634 - 654