A Raisin Foreign Object Target Detection Method Based on Improved YOLOv8

被引:0
|
作者
Ning, Meng [1 ,2 ]
Ma, Hongrui [1 ,2 ]
Wang, Yuqian [1 ,2 ]
Cai, Liyang [1 ,2 ]
Chen, Yiliang [1 ,2 ]
机构
[1] Jiangnan Univ, Sch Mech Engn, Wuxi 214122, Peoples R China
[2] Jiangsu Key Lab Adv Food Mfg Equipment & Technol, Wuxi 214122, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 16期
基金
美国国家科学基金会; 国家重点研发计划; 中国国家自然科学基金;
关键词
raisins; foreign object detection; YOLOv8; computer vision; QUALITY;
D O I
10.3390/app14167295
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
During the drying and processing of raisins, the presence of foreign matter such as fruit stems, branches, stones, and plastics is a common issue. To address this, we propose an enhanced real-time detection approach leveraging an improved YOLOv8 model. This novel method integrates the multi-head self-attention mechanism (MHSA) from BoTNet into YOLOv8's backbone. In the model's neck layer, selected C2f modules have been strategically replaced with RFAConv modules. The model also adopts an EIoU loss function in place of the original CIoU. Our experiments reveal that the refined YOLOv8 boasts a precision of 94.5%, a recall rate of 89.9%, and an F1-score of 0.921, with a mAP reaching 96.2% at the 0.5 IoU threshold and 81.5% across the 0.5-0.95 IoU range. For this model, comprising 13,177,692 parameters, the average time required for detecting each image on a GPU is 7.8 milliseconds. In contrast to several prevalent models of today, our enhanced model excels in mAP0.5 and demonstrates superiority in F1-score, parameter economy, computational efficiency, and speed. This study conclusively validates the capability of our improved YOLOv8 model to execute real-time foreign object detection on raisin production lines with high efficacy.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Improved Infrared Road Object Detection Algorithm Based on Attention Mechanism in YOLOv8
    Luo, Zilong
    Tian, Ying
    IAENG International Journal of Computer Science, 2024, 51 (06) : 673 - 680
  • [42] Detection of Coal and Gangue Based on Improved YOLOv8
    Zeng, Qingliang
    Zhou, Guangyu
    Wan, Lirong
    Wang, Liang
    Xuan, Guantao
    Shao, Yuanyuan
    SENSORS, 2024, 24 (04)
  • [43] An improved YOLOv8 algorithm for small object detection in autonomous driving
    Cao, Jie
    Zhang, Tong
    Hou, Liang
    Nan, Ning
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (04)
  • [44] Improved YOLOv8 algorithms for small object detection in aerial imagery
    Feng, Fei
    Hu, Yu
    Li, Weipeng
    Yang, Feiyan
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (06)
  • [45] Object detection algorithm based on improved YOLOv8 for drill pipe on coal mines
    Xiaojun Li
    Miao Li
    Mingyang Zhao
    Scientific Reports, 15 (1)
  • [46] Infrared Image Object Detection Algorithm for Substation Equipment Based on Improved YOLOv8
    Xiang, Siyu
    Chang, Zhengwei
    Liu, Xueyuan
    Luo, Lei
    Mao, Yang
    Du, Xiying
    Li, Bing
    Zhao, Zhenbing
    ENERGIES, 2024, 17 (17)
  • [47] Remote-Sensing Image Object Detection Based on Improved YOLOv8 Algorithm
    Zhang Xiuzai
    Shen Tao
    Xu Dai
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (10)
  • [48] A wildfire smoke detection based on improved YOLOv8
    Zhou, Jieyang
    Li, Yang
    Yin, Pengfei
    International Journal of Information and Communication Technology, 2024, 25 (06) : 52 - 67
  • [49] RA-YOLOv8: An Improved YOLOv8 Seal Text Detection Method
    Sun, Han
    Tan, Chaohong
    Pang, Si
    Wang, Hancheng
    Huang, Baohua
    ELECTRONICS, 2024, 13 (15)
  • [50] Safety Helmet Detection Based on Improved YOLOv8
    Lin, Bingyan
    IEEE ACCESS, 2024, 12 : 28260 - 28272