Neuron configuration enhances the synchronization dynamics in ring networks with heterogeneous firing patterns

被引:0
|
作者
Farrera-Megchun, Agustin [1 ]
Padilla-Longoria, Pablo [2 ]
Santos, Gerardo J. Escalera [3 ]
Espinal-Enriquez, Jesus [4 ]
Bernal-Jaquez, Roberto [5 ]
机构
[1] Univ Autonoma Metropolitana Cuajimalpa, Posgrad Ciencias Nat & Ingn, Av Vasco de Quiroga 4871, Ciudad de Mexico 05348, Mexico
[2] Univ Nacl Autonoma Mexico, Dept Matemat & Mecan, Inst Invest Matemat Aplicadas & Sistemas, Ciudad de Mexico 04510, Mexico
[3] Univ Autonoma Chiapas, Fac Ciencias Fis & Matemat, Tuxtla Gutierrez 29050, Chiapas, Mexico
[4] Natl Inst Genom Med, Computat Genom Div, Mexico City 14610, Mexico
[5] Univ Autonoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Av Vasco de Quiroga 4871, Ciudad de Mexico 05348, Mexico
关键词
Neuron configuration; Synchronization; Firing patterns; Bursting and tonic neurons; Huber-Braun neurons; Neuronal heterogeneity; BURST; SPIKING; MODEL; BIFURCATIONS; OSCILLATIONS; INFORMATION; PROPAGATION; MECHANISMS; TRANSITION; SYNAPSES;
D O I
10.1016/j.chaos.2024.115461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Neuron synchronization is fundamental for brain dynamics. While several efforts have been made to understand neuron coupling between tonic and bursting neurons, the position of neurons in a neural network and its relationship with synchronization is not fully understood. This work investigates the impact of neuronal heterogeneity on firing pattern transitions and synchronization in networks comprising tonic and bursting neurons. Using the Huber-Braun model, we explore two configurations: one with neurons grouped closely and another with maximal separation. Our findings reveal that while increased coupling strength generally promotes synchronization, the specific mix of neuron types and their spatial configuration crucially modulate both synchronization and firing pattern transitions, leading to phenomena such as cluster synchronization and global phase synchrony. The results indicate that the configuration with maximal separation and with mostly bursting neurons synchronizes more quickly. Firing pattern transitions are also configuration-dependent. For example, in the network with half tonic and half bursting, the configuration grouped closely undergoes diverse complex dynamics transition in the synchronized state, while the other configuration synchronize with chaotic bursting dynamics. Behaviors like cluster synchronization are observed in this network. The study underscores the significance of considering neuronal heterogeneity in understanding network dynamics.
引用
下载
收藏
页数:9
相关论文
共 42 条
  • [21] Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis
    Lu, Qishao
    Gu, Huaguang
    Yang, Zhuoqin
    Shi, Xia
    Duan, Lixia
    Zheng, Yanhong
    ACTA MECHANICA SINICA, 2008, 24 (06) : 593 - 628
  • [22] Dynamics of firing patterns,synchronization and resonances in neuronal electrical activities:experiments and analysis
    Qishao Lu Huaguang Gu Zhuoqin Yang Xia Shi Lixia Duan Yanhong Zheng School of Science
    Acta Mechanica Sinica, 2008, (06) : 593 - 628
  • [23] Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis
    Qishao Lu
    Huaguang Gu
    Zhuoqin Yang
    Xia Shi
    Lixia Duan
    Yanhong Zheng
    Acta Mechanica Sinica, 2008, 24 : 593 - 628
  • [24] Interplay between population firing stability and single neuron dynamics in hippocampal networks
    Slomowitz, Edden
    Styr, Boaz
    Vertkin, Irena
    Milshtein-Parush, Hila
    Nelken, Israel
    Slutsky, Michael
    Slutsky, Inna
    ELIFE, 2015, 4
  • [25] Dynamics of Firing Patterns in Evolvable Hierarchically Organized Neural Networks
    Chibirova, Olga
    Iglesias, Javier
    Shaposhnyk, Vladyslav
    Villa, Alessandro E. P.
    EVOLVABLE SYSTEMS: FROM BIOLOGY TO HARDWARE, PROCEEDINGS, 2008, 5216 : 296 - 307
  • [26] Various Firing Patterns Found in a Giant Neuron of the Pond Snail Lymnaea stagnalis and Their Dynamics
    Saito, Minoru
    Hamasaki, Yuuta
    Hosoi, Makoto
    Nakada, Shogo
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (03)
  • [27] Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
    晏询
    李志军
    李春来
    Chinese Physics B, 2024, 33 (02) : 619 - 626
  • [28] Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
    Yan, Xun
    Li, Zhijun
    Li, Chunlai
    CHINESE PHYSICS B, 2024, 33 (02)
  • [29] How single node dynamics enhances synchronization in neural networks with electrical coupling
    Bonacini, E.
    Burioni, R.
    di Volo, M.
    Groppi, M.
    Soresina, C.
    Vezzani, A.
    CHAOS SOLITONS & FRACTALS, 2016, 85 : 32 - 43
  • [30] Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics
    Schoell, E.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (6-7): : 891 - 919