Spiking neural networks with consistent mapping relations allow high-accuracy inference

被引:0
|
作者
Li, Yang [1 ,2 ]
He, Xiang [1 ,2 ]
Kong, Qingqun [1 ,3 ]
Zeng, Yi [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, Brain Inspired Cognit Intelligence Lab, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Sch Future Technol, Beijing, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai, Peoples R China
关键词
Spiking neural network; Conversion; Consistency; Object detection;
D O I
10.1016/j.ins.2024.120822
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spike-based neuromorphic hardware has demonstrated substantial potential in low energy consumption and efficient inference. However, the direct training of deep spiking neural networks is challenging, and conversion-based methods still require substantial time delay owing to unresolved conversion errors. We determine that the primary source of the conversion errors stems from the inconsistency between the mapping relationship of traditional activation functions and the input-output dynamics of spike neurons. To counter this, we introduce the Consistent ANN-SNN Conversion (CASC) framework. It includes the Consistent IF (CIF) neuron model, specifically contrived to minimize the influence of the stable point's upper bound, and the wakesleep conversion (WSC) method, synergistically ensuring the uniformity of neuron behavior. This method theoretically achieves a loss-free conversion, markedly diminishing time delays and improving inference performance in extensive classification and object detection tasks. Our approach offers a viable pathway toward more efficient and effective neuromorphic systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Deep Spiking Neural Network for High-Accuracy and Energy-Efficient Face Action Unit Recognition
    Zhang Jingren
    Wang Jingjing
    Yan Jingwei
    Wang Chunmao
    Pu Shiliang
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [22] An exact mapping from ReLU networks to spiking neural networks
    Stanojevic, Ana
    Wozniak, Stanislaw
    Bellec, Guillaume
    Cherubini, Giovanni
    Pantazi, Angeliki
    Gerstner, Wulfram
    NEURAL NETWORKS, 2023, 168 : 74 - 88
  • [23] AeroMetric Launches High-accuracy Mapping Solution
    不详
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2013, 27 (07): : 10 - 10
  • [24] High-accuracy variational Monte Carlo for frustrated magnets with deep neural networks
    Roth, Christopher
    Szabo, Attila
    Macdonald, Allan H.
    PHYSICAL REVIEW B, 2023, 108 (05)
  • [25] ToA and TDoA Estimation Using Artificial Neural Networks for High-Accuracy Ranging
    Kirmaz, Anil
    Sahin, Taylan
    Michalopoulos, Diomidis S.
    Gerstacker, Wolfgang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (12) : 3816 - 3830
  • [26] Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
    Kungl, Akos F.
    Schmitt, Sebastian
    Klaehn, Johann
    Mueller, Paul
    Baumbach, Andreas
    Dold, Dominik
    Kugele, Alexander
    Mueller, Eric
    Koke, Christoph
    Kleider, Mitja
    Mauch, Christian
    Breitwieser, Oliver
    Leng, Luziwei
    Guertler, Nico
    Guettler, Maurice
    Husmann, Dan
    Husmann, Kai
    Hartel, Andreas
    Karasenko, Vitali
    Gruebl, Andreas
    Schemmel, Johannes
    Meier, Karlheinz
    Petrovici, Mihai A.
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [27] High-accuracy and high-throughput reactive lymphocyte identification using lightweight neural networks
    Mei, Liye
    Jin, Shuangtong
    Huang, Tingting
    Peng, Haorang
    Zha, Wenqi
    He, Jing
    Zhang, Songsong
    Xu, Chuan
    Yang, Wei
    Shen, Hui
    Lei, Cheng
    Xiong, Bei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 97
  • [28] TQ-TTFS: High-Accuracy and Energy-Efficient Spiking Neural Networks Using Temporal Quantization Time-to-First-Spike Neuron
    Yang, Yuxuan
    Xuan, Zihao
    Kang, Yi
    29TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC 2024, 2024, : 836 - 841
  • [29] High-Accuracy Discrimination of Blasts and Earthquakes Using Neural Networks With Multiwindow Spectral Data
    Miao, Fajun
    Carpenter, N. Seth
    Wang, Zhenming
    Holcomb, Andrew S.
    Woolery, Edward W.
    SEISMOLOGICAL RESEARCH LETTERS, 2020, 91 (03) : 1646 - 1659
  • [30] High-Accuracy Parallel Neural Networks with Hard Constraints for a Mixed Stokes/Darcy Model
    Lu, Zhulian
    Zhang, Junyang
    Zhu, Xiaohong
    ENTROPY, 2025, 27 (03)