Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks

被引:21
|
作者
Kungl, Akos F. [1 ]
Schmitt, Sebastian [1 ]
Klaehn, Johann [1 ]
Mueller, Paul [1 ]
Baumbach, Andreas [1 ]
Dold, Dominik [1 ]
Kugele, Alexander [1 ]
Mueller, Eric [1 ]
Koke, Christoph [1 ]
Kleider, Mitja [1 ]
Mauch, Christian [1 ]
Breitwieser, Oliver [1 ]
Leng, Luziwei [1 ]
Guertler, Nico [1 ]
Guettler, Maurice [1 ]
Husmann, Dan [1 ]
Husmann, Kai [1 ]
Hartel, Andreas [1 ]
Karasenko, Vitali [1 ]
Gruebl, Andreas [1 ]
Schemmel, Johannes [1 ]
Meier, Karlheinz [1 ]
Petrovici, Mihai A. [1 ,2 ]
机构
[1] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany
[2] Univ Bern, Dept Physiol, Bern, Switzerland
基金
欧盟地平线“2020”;
关键词
physical models; neuromorphic engineering; massively parallel computing; spiking neurons; recurrent neural networks; neural sampling; probabilistic inference; NEURONS; MODEL;
D O I
10.3389/fnins.2019.01201
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The massively parallel nature of biological information processing plays an important role due to its superiority in comparison to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Bayesian Inference Accelerator for Spiking Neural Networks
    Katti, Prabodh
    Nimbekar, Anagha
    Li, Chen
    Acharyya, Amit
    Al-Hashimi, Bashir M.
    Rajendran, Bipin
    [J]. 2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [2] Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate
    Billaudelle, S.
    Stradmann, Y.
    Schreiber, K.
    Cramer, B.
    Baumbach, A.
    Dold, D.
    Goeltz, J.
    Kungl, A. F.
    Wunderlich, T. C.
    Hartel, A.
    Mueller, E.
    Breitwieser, O.
    Mauch, C.
    Kleider, M.
    Gruebl, A.
    Stoeckel, D.
    Pehle, C.
    Heimbrecht, A.
    Spilger, P.
    Kiene, G.
    Karasenko, V
    Senn, W.
    Petrovici, M. A.
    Schemmel, J.
    Meier, K.
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [3] An FPGA implementation of Bayesian inference with spiking neural networks
    Li, Haoran
    Wan, Bo
    Fang, Ying
    Li, Qifeng
    Liu, Jian K.
    An, Lingling
    [J]. FRONTIERS IN NEUROSCIENCE, 2024, 17
  • [4] Hierarchical Bayesian Inference and Learning in Spiking Neural Networks
    Guo, Shangqi
    Yu, Zhaofei
    Deng, Fei
    Hu, Xiaolin
    Chen, Feng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (01) : 133 - 145
  • [5] Live Demonstration: Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate
    Billaudelle, S.
    Stradmann, Y.
    Schreiber, K.
    Cramer, B.
    Baumbach, A.
    Dold, D.
    Goeltz, J.
    Kungl, A. F.
    Wunderlich, T. C.
    Hartel, A.
    Mueller, E.
    Breitwieser, O.
    Mauch, C.
    Kleider, M.
    Gruebl, A.
    Stoeckel, D.
    Pehle, C.
    Heimbrecht, A.
    Spilger, P.
    Kiene, G.
    Karasenko, V
    Senn, W.
    Petrovici, M. A.
    Schemmel, J.
    Meier, K.
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [6] Spiking networks for Bayesian inference and choice
    Ma, Wei Ji
    Beck, Jeffrey M.
    Pouget, Alexandre
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2008, 18 (02) : 217 - 222
  • [7] Simulation of Bayesian Learning and Inference on Distributed Stochastic Spiking Neural Networks
    Ahmed, Khadeer
    Shrestha, Amar
    Qiu, Qinru
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1044 - 1051
  • [8] Emulation of reionization simulations for Bayesian inference of astrophysics parameters using neural networks
    Schmit, C. J.
    Pritchard, J. R.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 475 (01) : 1213 - 1223
  • [9] Bayesian inference in neural networks
    Marzban, C
    [J]. FIRST CONFERENCE ON ARTIFICIAL INTELLIGENCE, 1998, : J25 - J30
  • [10] Bayesian inference in neural networks
    Paige, RL
    Butler, RW
    [J]. BIOMETRIKA, 2001, 88 (03) : 623 - 641