In this paper, we consider the following p(x)-biharmonic problem with Hardy nonlinearity: <span style="color:rgba(0, 0, 0, 0.87)">Delta 2p ( x )</span><span style="color:rgba(0, 0, 0, 0.87)">u </span><span style="color:rgba(0, 0, 0, 0.87)">-</span><span style="color:rgba(0, 0, 0, 0.87)">Delta p ( x )</span><span style="color:rgba(0, 0, 0, 0.87)">u </span><span style="color:rgba(0, 0, 0, 0.87)">= </span><span style="color:rgba(0, 0, 0, 0.87)">lambda</span><span style="color:rgba(0, 0, 0, 0.87)">(| u|p ( x ) - 2u)/delta( x)2p ( x )</span><span style="color:rgba(0, 0, 0, 0.87)">+ </span><span style="color:rgba(0, 0, 0, 0.87)">f</span><span style="color:rgba(0, 0, 0, 0.87)">( </span><span style="color:rgba(0, 0, 0, 0.87)">x </span><span style="color:rgba(0, 0, 0, 0.87)">, </span><span style="color:rgba(0, 0, 0, 0.87)">u </span>) in Omega, u= 0 on partial derivative ohm, <span style="color:rgba(0, 0, 0, 0.87)">|del</span><span style="color:rgba(0, 0, 0, 0.87)">u</span><span style="color:rgba(0, 0, 0, 0.87)">|p (( x ) - 2)</span><span style="color:rgba(0, 0, 0, 0.87)">partial derivative u/partial derivative n</span><span style="color:rgba(0, 0, 0, 0.87)">= </span><span style="color:rgba(0, 0, 0, 0.87)">g</span><span style="color:rgba(0, 0, 0, 0.87)">( </span><span style="color:rgba(0, 0, 0, 0.87)">x </span><span style="color:rgba(0, 0, 0, 0.87)">, </span><span style="color:rgba(0, 0, 0, 0.87)">u ) </span> on partial derivative ohm, <span style="background-color:inherit"> where Omega c R (N) (N > 3), Delta (p(x)) is the p(x)-Laplacian and Delta (2)(p(x)) is the p(x)biharmonic operator. More precisely, under some appropriate conditions on the nonlinearities f and g, we combine the variational methods with the theory of the generalized Lebesgue and Sobolev spaces to prove the existence and the multiplicity of solutions.</span>