PET digitization chain for Monte Carlo simulation in GATE

被引:2
|
作者
Salvadori, Julien [1 ]
Merlet, Antoine [2 ]
Presles, Benoit [2 ]
Cabello, Jorge [3 ]
Su, Kuan-Hao [4 ]
Cochet, Alexandre [2 ,5 ]
Etxebeste, Ane [6 ,7 ,8 ]
Vrigneaud, Jean-Marc [2 ,5 ]
Sarrut, David [6 ,7 ,8 ]
机构
[1] Inst Cancerol Strasbourg Europe ICANS, Grp Cooperat Sanit, Nucl Med, Strasbourg, France
[2] Univ Burgundy, Inst Chim Mol Univ Bourgogne ICMUB, UMR CNRS 6302, Dijon, France
[3] Siemens Med Solut USA Inc, Knoxville, TN USA
[4] GE Healthcare, Waukesha, WI USA
[5] Georges Francois Leclerc Canc Ctr, Dept Nucl Med, Dijon, France
[6] Univ Lyon, CREATIS, Lyon, France
[7] INSA Lyon, CNRS UMR5220, Inserm U1044, Lyon, France
[8] Univ Lyon 1, Ctr Leon Berard, Lyon, France
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2024年 / 69卷 / 16期
关键词
PET; GATE; Monte-Carlo simulation; digitizer; SILICON-PHOTOMULTIPLIER; VALIDATION; DETECTOR; RATES; MODEL;
D O I
10.1088/1361-6560/ad638c
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. We introduce a versatile methodology for the accurate modelling of PET imaging systems via Monte Carlo simulations, using the Geant4 application for tomographic emission (GATE) platform. Accurate Monte Carlo modelling involves the incorporation of a complete analytical signal processing chain, called the digitizer in GATE, to emulate the different count rates encountered in actual positron emission tomography (PET) systems. Approach. The proposed approach consists of two steps: (1) modelling the digitizer to replicate the detection chain of real systems, covering all available parameters, whether publicly accessible or supplied by manufacturers; (2) estimating the remaining parameters, i.e. background noise level, detection efficiency, and pile-up, using optimisation techniques based on experimental single and prompt event rates. We show that this two-step optimisation reproduces the other experimental count rates (true, scatter, and random), without the need for additional adjustments. This method has been applied and validated with experimental data derived from the NEMA count losses test for three state-of-the-art SiPM-based time-of-flight (TOF)-PET systems: Philips Vereos, Siemens Biograph Vision 600 and GE Discovery MI 4-ring. Main results. The results show good agreement between experiments and simulations for the three PET systems, with absolute relative discrepancies below 3%, 6%, 6%, 7% and 12% for prompt, random, true, scatter and noise equivalent count rates, respectively, within the 0-10 kBq<middle dot>ml-1 activity concentration range typically observed in whole-body 18F scans. Significance. Overall, the proposed digitizer optimisation method was shown to be effective in reproducing count rates and NECR for three of the latest generation SiPM-based TOF-PET imaging systems. The proposed methodology could be applied to other PET scanners.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Markov chain Monte Carlo simulation methods in econometrics
    Chib, S
    Greenberg, E
    ECONOMETRIC THEORY, 1996, 12 (03) : 409 - 431
  • [42] Validation of the Monte Carlo Simulation of a Siemens Biograph mCT PET
    Vazquez Canelas, L.
    Quintana Arnes, B.
    Montes Fuentes, C.
    Gutierrez Palmero, M. J.
    Tamayo Alonso, P.
    Blasco, J. M.
    BASIC CONCEPTS IN NUCLEAR PHYSICS: THEORY, EXPERIMENTS AND APPLICATIONS, 2016, 182 : 227 - 231
  • [43] Monte Carlo simulation for depth encoding multicrystal detector for PET
    Haneishi, H
    Yamada, A
    Takagi, K
    Murayama, H
    2001 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORDS, VOLS 1-4, 2002, : 1993 - 1996
  • [44] Monte Carlo simulation of PET images for injection dose optimization
    Boldys, Jiri
    Dvorak, Jiri
    Belohlavek, Otakar
    Skopalova, Magdalena
    COMPUTATIONAL VISION AND MEDICAL IMAGE PROCESSING: VIPIMAGE 2011, 2012, : 279 - 284
  • [45] Monte Carlo database production for human brain PET imaging using GATE
    Jan, S.
    Comtat, C.
    Trebossen, R.
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 3159 - 3162
  • [46] Comparison of Double-Gate MOSFETs and FinFETs with Monte Carlo Simulation
    Gulzar A. Kathawala
    Mohamed Mohamed
    Umberto Ravaioli
    Journal of Computational Electronics, 2003, 2 : 85 - 89
  • [47] Performance characteristics of NeuroPET system using GATE Monte Carlo simulation
    Sheikhzadeh, P.
    Sabet, H.
    Ghadiri, H.
    Geramifar, P.
    Mahani, H.
    Ghafarian, P.
    Ay, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 : S512 - S513
  • [48] GATE Monte Carlo simulation of GE Discovery 600 and a uniformity phantom
    Heesoon Sheen
    Ki Chun Im
    Yong Choi
    Hanback Shin
    Youngyih Han
    Kwangzoo Chung
    Junsang Cho
    Sang Hee Ahn
    Journal of the Korean Physical Society, 2014, 65 : 1802 - 1808
  • [49] GATE Monte Carlo Simulation of GE Discovery 600 and a Uniformity Phantom
    Sheen, Heesoon
    Im, Ki Chun
    Choi, Yong
    Shin, Hanback
    Han, Youngyih
    Chung, Kwangzoo
    Cho, Junsang
    Ahn, Sang Hee
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 65 (11) : 1802 - 1808
  • [50] Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation
    Kang, Han Gyu
    Song, Seong Hyun
    Han, Young Been
    Kim, Kyeong Min
    Hong, Seong Jong
    JOURNAL OF BIOMEDICAL OPTICS, 2018, 23 (02)