Revealing flow structures in horizontal pipe and biomass combustor using computational fluid dynamics simulation

被引:0
|
作者
Steven, Soen [1 ,2 ]
Hernowo, Pandit [3 ]
Sasongko, Nugroho A. [1 ,4 ]
Soedarsono, Adik A. [5 ]
Wardani, Maya L. D. [1 ]
Otivriyanti, Geby [1 ]
Soekotjo, Ernie S. A. [1 ]
Hidayatullah, Ibnu M. [6 ]
Sophiana, Intan C. [7 ]
Culsum, Neng T. U. [8 ]
Fajri, Imam M. [2 ]
Pasymi, Pasymi [9 ]
Bindar, Yazid [2 ,10 ]
机构
[1] Natl Res & Innovat Agcy BRIN, Res Ctr Sustainable Prod Syst & Life Cycle Assessm, KST BJ Habibie, South Tangerang, Banten, Indonesia
[2] Inst Teknol Bandung, Fac Ind Technol, Biomass Technol Workshop, Sumedang 45363, Indonesia
[3] Univ Bhayangkara Jakarta Raya, Dept Chem Engn, South Jakarta, West Java, Indonesia
[4] Univ Pertahanan Republik Indonesia, Energy Secur Grad Program, Tajur, West Java, Indonesia
[5] Natl Res & Innovat Agcy BRIN, Res Ctr Proc & Mfg Ind Technol, KST BJ Habibie, South Tangerang, Banten, Indonesia
[6] Univ Indonesia, Fac Engn, Res Ctr Biomass Valorizat, Depok, Indonesia
[7] Univ Indonesia, Fac Engn, Dept Chem Engn, Depok, Indonesia
[8] Natl Res & Innovat Agcy BRIN, KST BJ Habibie, Res Ctr Energy Convers & Conservat, South Tangerang, Banten, Indonesia
[9] Univ Bung Hatta, Dept Chem Engn, Padang, Indonesia
[10] Inst Teknol Bandung, Fac Ind Technol, Dept Chem Engn, Bandung, Indonesia
关键词
CFD; combustion; Hagen-Poiseuille; multiphase flow; turbulent; RICE HUSK; PARTICLE-SIZE; TURBULENCE; BIODIESEL; DESIGN;
D O I
10.1002/apj.3137
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Computational fluid dynamics (CFD) is a powerful tool to provide information on detailed turbulent flow in unit processes. For that reason, this study intends to reveal the flow structures in the horizontal pipe and biomass combustor. The simulation was aided by ANSYS Fluent employing standard k$$ k $$-epsilon$$ \upvarepsilon $$ model. The results show that a greater Reynolds number generates more turbulence. The pressure drop inside the pipe is also found steeper for small pipe diameters following Fanning's correlation. The fully developed flow for the laminar regime is found in locations where the ratio of entrance length to pipe diameter complies with Hagen-Poiseuille's rule. The sucking phenomenon in jet flow is also similar to the working principle of ejector. For the biomass combustor, the average combustion temperature is 356-696 degrees C, and the maximum flame temperature is 1587-1697 degrees C. Subsequently, air initially flows through the burner area and then moves to the outlet when enters the combustor chamber. Not so for particle flow, the particle experiences sedimentation in the burner area and then falls as it enters the combustor chamber. This study also convinces that secondary air supply can produce more circulating effects in the combustor.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Non-reacting flow analysis from combustor inlet to outlet using computational fluid dynamics code
    Reddy, GA
    Ganesan, V
    DEFENCE SCIENCE JOURNAL, 2004, 54 (04) : 455 - 467
  • [22] Computational Fluid Dynamics (CFD) simulation of liquid column separation in pipe transients
    Warda, H. A.
    Wahba, E. M.
    El-Din, M. Salah
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3451 - 3462
  • [23] Wind Flow Simulation around Rhizophora Mangrove Roots Using Computational Fluid Dynamics
    Rahuman, Sini
    Ismail, A. Mohamed
    Varghese, Shyla Manavalan
    Toworfe, George Kwamina
    Sasikumar, Bashyam
    JOURNAL OF NANOMATERIALS, 2022, 2022
  • [24] Simulation of flow field during irrigation/aspiration in phacoemulsification using computational fluid dynamics
    Abouali, Omid
    Bayatpour, Dariush
    Ghaffariyeh, Alireza
    Ahmadi, Goodarz
    JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2011, 37 (08): : 1530 - 1537
  • [25] SIMULATION OF CELL-LADEN FLOW IN A CELL MIXER USING COMPUTATIONAL FLUID DYNAMICS
    Drobek, Christoph
    Seitz, Hermann
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58
  • [26] Combustor design and modification integrates computational fluid dynamics
    Chapman, P
    CORROSION PREVENTION & CONTROL, 1995, 42 (06): : 132 - 136
  • [27] Going with the flow: Computational fluid dynamics simulation of dough mixers
    Connelly, R. K.
    CEREAL FOODS WORLD, 2008, 53 (04) : 198 - 204
  • [28] Computational Fluid Dynamics Simulation of Multiphase Flow in Structured Packings
    Shojaee, Saeed
    Hosseini, Seyyed Hossein
    Razavi, Behzad Saeedi
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [29] Aerodynamic Tailoring of Structures Using Computational Fluid Dynamics
    Ding, Fei
    Kareem, Ahsan
    Wan, Jiawei
    STRUCTURAL ENGINEERING INTERNATIONAL, 2019, 29 (01) : 26 - 39
  • [30] A review on computational fluid dynamics modeling and simulation of horizontal axis hydrokinetic turbines
    Lain, S.
    Contreras, L. T.
    Lopez, O.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (09)