Estimation of Probability Density Function Under Judgment Post-Stratification Sampling Using Bayesian Estimation of Bandwidth

被引:0
|
作者
Majidabadi, Ali Najafi [1 ]
Nematollahi, Nader [1 ]
机构
[1] Allameh Tabatabai Univ, Dept Stat, Tehran, Iran
关键词
Bayesian bandwidth; Judgment post stratification; Probability density function estimation; Simple random sampling; VARIANCE-ESTIMATION; ORDER-STATISTICS;
D O I
10.1007/s40995-024-01698-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Judgment Post-Stratification (JPS) is a sampling method that uses extra rank information in a simple random sampling (SRS) to stratify the sample and increase the efficiency of the estimators of the population parameters. In this paper, we consider the kernel estimation of the probability density function (pdf) using JPS sample. The properties of JPS estimator of pdf and the asymptotic mean integrated squared error of this estimator are obtained. We find a condition which guarantees that JPS density estimate performs better than its simple random sampling counterpart. To implement the kernel density estimator, it is required to specify a bandwidth. We use a Bayesian approach to find an estimate of the bandwidth. To compare the JPS density estimator with SRS estimator and also Bayesian bandwidth with other existing bandwidths, we use an extensive simulation study. Results are applied to the bone mineral density (BMD) data from the third National Health and Nutrition Examination Survey to estimate pdf of BMD.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Estimation of a probability density function using interval aggregated data
    Huang, Jianhua Z.
    Wang, Xueying
    Wu, Ximing
    Zhou, Lan
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (15) : 3093 - 3105
  • [32] A PROBABILITY DENSITY FUNCTION ESTIMATION USING F-TRANSFORM
    Holcapek, Michal
    Tichy, Tomas
    [J]. KYBERNETIKA, 2010, 46 (03) : 447 - 458
  • [33] Fully Bayesian estimation under informative sampling
    Leon-Novelo, Luis G.
    Savitsky, Terrance D.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 1608 - 1645
  • [34] Kernel estimation for a superpopulation probability density function under informative selection
    Bonnéry D.
    Breidt F.J.
    Coquet F.
    [J]. METRON, 2017, 75 (3) : 301 - 318
  • [35] Bayesian Estimation with Uncertain Parameters of Probability Density Functions
    Klumpp, Vesa
    Hanebeck, Uwe D.
    [J]. FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 1759 - 1766
  • [36] A BAYESIAN-APPROACH TO THE PROBABILITY DENSITY-ESTIMATION
    ISHIGURO, M
    SAKAMOTO, Y
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1984, 36 (03) : 523 - 538
  • [37] PREVALENCE AND TREND ESTIMATION FROM OBSERVATIONAL DATA WITH HIGHLY VARIABLE POST-STRATIFICATION WEIGHTS
    Vandendijck, Yannick
    Faes, Christel
    Hens, Niel
    [J]. ANNALS OF APPLIED STATISTICS, 2016, 10 (01): : 94 - 117
  • [38] Uncovering selection bias in case-control studies using Bayesian post-stratification
    Geneletti, S.
    Best, N.
    Toledano, M. B.
    Elliott, P.
    Richardson, S.
    [J]. STATISTICS IN MEDICINE, 2013, 32 (15) : 2555 - 2570
  • [39] Estimation of Fracture Size and Probability Density Function by Setting Scanlines in Rectangular Sampling Window
    Gu, Feifan
    Chen, Jianping
    Zhang, Qi
    Tan, Chun
    Zhang, Yansong
    Wang, Qing
    [J]. LITHOSPHERE, 2023, 2023 (01)
  • [40] A Bayesian procedure for bandwidth selection in circular kernel density estimation
    Bedouhene, Kahina
    Zougab, Nabil
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2020, 26 (01): : 69 - 82