Estimation of Probability Density Function Under Judgment Post-Stratification Sampling Using Bayesian Estimation of Bandwidth

被引:0
|
作者
Majidabadi, Ali Najafi [1 ]
Nematollahi, Nader [1 ]
机构
[1] Allameh Tabatabai Univ, Dept Stat, Tehran, Iran
关键词
Bayesian bandwidth; Judgment post stratification; Probability density function estimation; Simple random sampling; VARIANCE-ESTIMATION; ORDER-STATISTICS;
D O I
10.1007/s40995-024-01698-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Judgment Post-Stratification (JPS) is a sampling method that uses extra rank information in a simple random sampling (SRS) to stratify the sample and increase the efficiency of the estimators of the population parameters. In this paper, we consider the kernel estimation of the probability density function (pdf) using JPS sample. The properties of JPS estimator of pdf and the asymptotic mean integrated squared error of this estimator are obtained. We find a condition which guarantees that JPS density estimate performs better than its simple random sampling counterpart. To implement the kernel density estimator, it is required to specify a bandwidth. We use a Bayesian approach to find an estimate of the bandwidth. To compare the JPS density estimator with SRS estimator and also Bayesian bandwidth with other existing bandwidths, we use an extensive simulation study. Results are applied to the bone mineral density (BMD) data from the third National Health and Nutrition Examination Survey to estimate pdf of BMD.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Probability density function estimation using gamma kernels
    Chen, SX
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2000, 52 (03) : 471 - 480
  • [22] Estimation of source parameters using a non-Gaussian probability density function in a Bayesian framework
    Nana Yoshimitsu
    Takuto Maeda
    Tomonari Sei
    [J]. Earth, Planets and Space, 75
  • [23] Estimation of source parameters using a non-Gaussian probability density function in a Bayesian framework
    Yoshimitsu, Nana
    Maeda, Takuto
    Sei, Tomonari
    [J]. EARTH PLANETS AND SPACE, 2023, 75 (01):
  • [24] Probability density function estimation of laser light scintillation via Bayesian mixtures
    Wang, Eric X.
    Avramov-Zamurovic, Svetlana
    Watkins, Richard J.
    Nelson, Charles
    Malek-Madani, Reza
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (03) : 580 - 590
  • [25] Methodology for probability density function estimation
    Poggi, Beatriz
    Tobio, Martel
    Abad, Levy
    [J]. BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2019, 7 (01): : 23 - 32
  • [26] EFFICIENT ESTIMATION OF A PROBABILITY DENSITY FUNCTION
    PICKANDS, J
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (03): : 854 - &
  • [27] SERIES ESTIMATION OF A PROBABILITY DENSITY FUNCTION
    SPECHT, DF
    [J]. TECHNOMETRICS, 1971, 13 (02) : 409 - &
  • [28] Probability density estimation using adaptive activation function neurons
    Fiori, S
    Bucciarelli, P
    [J]. NEURAL PROCESSING LETTERS, 2001, 13 (01) : 31 - 42
  • [29] Probability density function estimation using orthogonal forward regression
    Chen, S.
    Hong, X.
    Harris, C. J.
    [J]. 2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 2491 - +
  • [30] Probability Density Estimation Using Adaptive Activation Function Neurons
    Simone Fiori
    Paolo Bucciarelli
    [J]. Neural Processing Letters, 2001, 13 : 31 - 42