Fabrication of piezoelectric poly(l-lactic acid) nanofiber membranes with controllable properties

被引:0
|
作者
Cheng, Jie [1 ]
Yang, Yonghao [1 ]
Zhang, Chen [1 ]
Dong, Xuechun [1 ]
Liu, Jinbo [1 ]
Wu, Gensheng [2 ]
Zhao, Gutian [1 ]
Ni, Zhonghua [1 ]
机构
[1] Southeast Univ, Sch Mech Engn, Jiangsu Key Lab Design & Manufacture Micronano Bio, Nanjing, Peoples R China
[2] Nanjing Forestry Univ, Sch Mech & Elect Engn, Nanjing, Peoples R China
关键词
mechanical properties; piezoelectricity; PLLA nanofiber membrane; wettability; MECHANICAL-PROPERTIES; SOLVENT SYSTEMS; ELECTROSPUN; PLA; POLYLACTIDE; FIBERS; FILMS;
D O I
10.1002/pat.6542
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(l-lactic acid) (PLLA) material has superior biocompatibility, degradability, and piezoelectricity, which have been chosen to fabricate electrospinning membranes to provide high surface area, porosity, and flexibility as applied in implantable medical devices. In this study, PLLA nanofiber membranes with adjustable performance were successfully prepared. The piezoelectricity, mechanical properties, and wettability could be tuned by the molecular weight of PLLA and the concentration of PLLA-Dichloromethane (DCM) solution. The maximum output voltage of the PLLA nanofiber membranes could be adjusted from 0.28 to 0.55 V, and the breaking strength could vary in the range of 6.3-10.1 MPa. Furthermore, the elongation at break can be adjusted between 22% and 142%. In addition, the wettability of PLLA nanofiber membranes could be changed from hydrophobic state to hydrophilic state by surface treatment techniques. The excellent biocompatibility was further demonstrated by cell culture on hydrophilic membranes. These results implied that the molecular weight of PLLA and the concentration of PLLA-DCM solutions could be an effective method to regulate characteristics of electrospinning membranes, which can provide more application possibilities for implantable medical devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Synthesis and Modeling of Poly(L-lactic acid) via Polycondensation of L-Lactic Acid
    Theodorou, Alexis
    Raptis, Vasilios
    Baltzaki, Chrissie Isabella Maria
    Manios, Thrassyvoulos
    Harmandaris, Vagelis
    Velonia, Kelly
    POLYMERS, 2023, 15 (23)
  • [32] Poly(L-lactic acid)-polyethylene glycol-poly(L-lactic acid) triblock copolymer: A novel macromolecular plasticizer to enhance the crystallization of poly(L-lactic acid)
    Li, Le
    Cao, Zhi-Qiang
    Bao, Rui-Ying
    Xie, Bang-Hu
    Yang, Ming-Bo
    Yang, Wei
    EUROPEAN POLYMER JOURNAL, 2017, 97 : 272 - 281
  • [33] Fabrication of piezoelectric poly(l-lactic acid)/BaTiO3 fibre by the melt-spinning process
    Hyun Ju Oh
    Do-Kun Kim
    Young Chan Choi
    Seung-Ju Lim
    Jae Bum Jeong
    Jae Hoon Ko
    Wan-Gyu Hahm
    Sang-Woo Kim
    Yongju Lee
    Hyeok Kim
    Byeong Jin Yeang
    Scientific Reports, 10
  • [34] Fabrication of piezoelectric poly(l-lactic acid)/BaTiO3 fibre by the melt-spinning process
    Oh, Hyun Ju
    Kim, Do-Kun
    Choi, Young Chan
    Lim, Seung-Ju
    Jeong, Jae Bum
    Ko, Jae Hoon
    Hahm, Wan-Gyu
    Kim, Sang-Woo
    Lee, Yongju
    Kim, Hyeok
    Yeang, Byeong Jin
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [35] The melting of poly (L-lactic acid)
    Hay, James N. (j.n.hay@bham.ac.uk), 1600, Elsevier Ltd (100):
  • [36] The melting of poly (L-lactic acid)
    Aziz, Azizan A.
    Hay, James N.
    Jenkins, Michael J.
    EUROPEAN POLYMER JOURNAL, 2018, 100 : 253 - 257
  • [37] Thermal and mechanical properties of plasticized poly(L-lactic acid)
    Baiardo, M
    Frisoni, G
    Scandola, M
    Rimelen, M
    Lips, D
    Ruffieux, K
    Wintermantel, E
    JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 90 (07) : 1731 - 1738
  • [38] Raman mapping of piezoelectric poly(L-lactic acid) films for force sensors
    Babichuk, Ivan S.
    Lin, Chubin
    Qiu, Yuhui
    Zhu, Huiyu
    Ye, Terry Tao
    Gao, Zhaoli
    Yang, Jian
    RSC ADVANCES, 2022, 12 (43) : 27687 - 27697
  • [39] Film sensor device fabricated by a piezoelectric poly(L-lactic acid) film
    Murata Manufacturing Co., Ltd., Nagaokakyo, Kyoto 617-8555, Japan
    不详
    Jpn. J. Appl. Phys., 9 PART 2
  • [40] Influence of α′-/α-crystal polymorphism on properties of poly(l-lactic acid)
    Di Lorenzo, Maria Laura
    Androsch, Rene
    POLYMER INTERNATIONAL, 2019, 68 (03) : 320 - 334