Fabrication of piezoelectric poly(l-lactic acid) nanofiber membranes with controllable properties

被引:0
|
作者
Cheng, Jie [1 ]
Yang, Yonghao [1 ]
Zhang, Chen [1 ]
Dong, Xuechun [1 ]
Liu, Jinbo [1 ]
Wu, Gensheng [2 ]
Zhao, Gutian [1 ]
Ni, Zhonghua [1 ]
机构
[1] Southeast Univ, Sch Mech Engn, Jiangsu Key Lab Design & Manufacture Micronano Bio, Nanjing, Peoples R China
[2] Nanjing Forestry Univ, Sch Mech & Elect Engn, Nanjing, Peoples R China
关键词
mechanical properties; piezoelectricity; PLLA nanofiber membrane; wettability; MECHANICAL-PROPERTIES; SOLVENT SYSTEMS; ELECTROSPUN; PLA; POLYLACTIDE; FIBERS; FILMS;
D O I
10.1002/pat.6542
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(l-lactic acid) (PLLA) material has superior biocompatibility, degradability, and piezoelectricity, which have been chosen to fabricate electrospinning membranes to provide high surface area, porosity, and flexibility as applied in implantable medical devices. In this study, PLLA nanofiber membranes with adjustable performance were successfully prepared. The piezoelectricity, mechanical properties, and wettability could be tuned by the molecular weight of PLLA and the concentration of PLLA-Dichloromethane (DCM) solution. The maximum output voltage of the PLLA nanofiber membranes could be adjusted from 0.28 to 0.55 V, and the breaking strength could vary in the range of 6.3-10.1 MPa. Furthermore, the elongation at break can be adjusted between 22% and 142%. In addition, the wettability of PLLA nanofiber membranes could be changed from hydrophobic state to hydrophilic state by surface treatment techniques. The excellent biocompatibility was further demonstrated by cell culture on hydrophilic membranes. These results implied that the molecular weight of PLLA and the concentration of PLLA-DCM solutions could be an effective method to regulate characteristics of electrospinning membranes, which can provide more application possibilities for implantable medical devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Assessment of the properties of poly(L-lactic acid) sheets produced with differing amounts of postconsumer recycled poly(L-lactic acid)
    Chariyachotilert, Chaiyatas
    Joshi, Satish
    Selke, Susan E. M.
    Auras, Rafael
    JOURNAL OF PLASTIC FILM & SHEETING, 2012, 28 (04) : 314 - 335
  • [22] Poly(L-lactic acid)/Boron Nitride Nanocomposites: Influence of Boron Nitride Functionalization on the Properties of Poly(L-lactic acid)
    Rosely, C. V. Sijla
    Shaiju, P.
    Gowd, E. Bhoje
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (40): : 8599 - 8609
  • [23] Piezoelectric antibacterial fabric comprised of poly(L-lactic acid) yarn
    Ando, Masamichi
    Takeshima, Satoshi
    Ishiura, Yutaka
    Ando, Kanako
    Onishi, Osamu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (10)
  • [24] Characterization of an air-spun poly(L-lactic acid) nanofiber mesh
    Francois, Sebastien
    Sarra-Bournet, Christian
    Jaffre, Antoine
    Chakfe, Nabil
    Durand, Bernard
    Laroche, Gaetan
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2010, 93B (02) : 531 - 543
  • [25] Optimisation of electrospinning parameter for Poly(L-lactic) acid (PLLA) electrospun nanofiber
    Sawawi, Marini
    Sahari, S. K.
    Kuan, Nicholas
    Yusof, Mahshuri
    Andew, Magdalene
    Salleh, S. F.
    Sapawi, Rohana
    9TH INTERNATIONAL UNIMAS STEM ENGINEERING CONFERENCE (ENCON 2016) INNOVATIVE SOLUTIONS FOR ENGINEERING AND TECHNOLOGY CHALLENGES, 2017, 87
  • [26] Improved mechanical properties of poly(l-lactic acid) stent coated by poly(d, l-lactic acid) and poly(l-lactic-co-glycolic acid) biopolymer blend
    Cheng, Jie
    Li, Junjie
    Deng, Dongwen
    Wu, Gensheng
    Zhou, Min
    Zhao, Gutian
    Ni, Zhonghua
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2022, 33 (04) : 1109 - 1115
  • [27] Conformational differences of poly(L-lactic acid) and poly(D,L-lactic acid) in dilute solutions
    Pavlov, G. M.
    Dommes, O. A.
    Aver'yanov, I. V.
    Kolbina, G. F.
    Okatova, O. V.
    Korzhikov, V. A.
    Dobrodumov, A. V.
    Tennikova, T. B.
    DOKLADY CHEMISTRY, 2015, 465 : 261 - 264
  • [28] Conformational differences of poly(L-lactic acid) and poly(D,L-lactic acid) in dilute solutions
    G. M. Pavlov
    O. A. Dommes
    I. V. Aver’yanov
    G. F. Kolbina
    O. V. Okatova
    V. A. Korzhikov
    A. V. Dobrodumov
    T. B. Tennikova
    Doklady Chemistry, 2015, 465 : 261 - 264
  • [29] Fabrication and degradation of poly(L-lactic acid) scaffolds with wool keratin
    Li, Jiashen
    Li, Yi
    Li, Lin
    Mak, Arthur F. T.
    Ko, Frank
    Qin, Ling
    COMPOSITES PART B-ENGINEERING, 2009, 40 (07) : 664 - 667
  • [30] Fabrication and crystallization behavior of hollow poly(l-lactic acid) nanofibers
    Samanta, Pratick
    Srivastava, Rajiv
    Nandan, Bhanu
    POLYMER CRYSTALLIZATION, 2020, 3 (05)