Artificial intelligence uncertainty quantification in radiotherapy applications - A scoping review

被引:0
|
作者
Wahid, Kareem A. [1 ,2 ]
Kaffey, Zaphanlene Y. [2 ]
Farris, David P. [3 ]
Humbert-Vidan, Laia [2 ]
Moreno, Amy C. [2 ]
Rasmussen, Mathis [4 ]
Rend, Jintao [4 ]
Naser, Mohamed A. [2 ]
Netherton, Tucker J. [5 ]
Korreman, Stine [4 ]
Balakrishnan, Guha [6 ]
Fuller, Clifton D. [2 ]
Fuentes, David [1 ]
Dohopolski, Michael J. [7 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Imaging Phys, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX USA
[3] Univ Texas MD Anderson Canc Ctr, Res Med Lib, Houston, TX USA
[4] Aarhus Univ Hosp, Dept Oncol, Aarhus, Denmark
[5] Univ Texas MD Anderson Canc Ctr, Dept Radiat Phys, Houston, TX USA
[6] Rice Univ, Houston, TX USA
[7] Univ Texas Southwestern Med Ctr Dallas, Dept Radiat Oncol, Dallas, TX 75390 USA
基金
美国国家科学基金会;
关键词
AUTOMATIC SEGMENTATION; DEEP; PREDICTION; ENSEMBLE; NETWORK; MODELS; RISK;
D O I
10.1016/j.radonc.2024.110542
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background/purpose: The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. The purpose of this study was to scope existing literature related to UQ in RT, identify areas of improvement, and determine future directions. Methods: We followed the PRISMA-ScR scoping review reporting guidelines. We utilized the population (human cancer patients), concept (utilization of AI UQ), context (radiotherapy applications) framework to structure our search and screening process. We conducted a systematic search spanning seven databases, supplemented by manual curation, up to January 2024. Our search yielded a total of 8980 articles for initial review. Manuscript screening and data extraction was performed in Covidence. Data extraction categories included general study characteristics, RT characteristics, AI characteristics, and UQ characteristics. Results: We identified 56 articles published from 2015 to 2024. 10 domains of RT applications were represented; most studies evaluated auto-contouring (50 %), followed by image-synthesis (13 %), and multiple applications simultaneously (11 %). 12 disease sites were represented, with head and neck cancer being the most common disease site independent of application space (32 %). Imaging data was used in 91 % of studies, while only 13 % incorporated RT dose information. Most studies focused on failure detection as the main application of UQ (60 %), with Monte Carlo dropout being the most commonly implemented UQ method (32 %) followed by ensembling (16 %). 55 % of studies did not share code or datasets. Conclusion: Our review revealed a lack of diversity in UQ for RT applications beyond auto-contouring. Moreover, we identified a clear need to study additional UQ methods, such as conformal prediction. Our results may incentivize the development of guidelines for reporting and implementation of UQ in RT.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Applications of artificial intelligence in restorative dentistry: a scoping review
    Aziz, Ahmed M.
    Hamdoon, Zaid
    Bin Husein, Adam
    Dheyab, Shaima
    Obaid, Fajer
    [J]. QUINTESSENCE INTERNATIONAL, 2024, 55 (06): : 430 - 440
  • [2] A scoping review of artificial intelligence applications in thoracic surgery
    Seastedt, Kenneth P.
    Moukheiber, Dana
    Mahindre, Saurabh A.
    Thammineni, Chaitanya
    Rosen, Darin T.
    Watkins, Ammara A.
    Hashimoto, Daniel A.
    Hoang, Chuong D.
    Kpodonu, Jacques
    Celi, Leo A.
    [J]. EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2022, 61 (02) : 239 - 248
  • [3] Applications of Artificial Intelligence to Office Laryngoscopy: A Scoping Review
    Yao, Peter
    Usman, Moon
    Chen, Yu H.
    German, Alexander
    Andreadis, Katerina
    Mages, Keith
    Rameau, Anais
    [J]. LARYNGOSCOPE, 2022, 132 (10): : 1993 - 2016
  • [4] Using artificial intelligence to improve body iron quantification: A scoping review
    Nashwan, Abdulqadir J.
    Alkhawaldeh, Ibraheem M.
    Shaheen, Nour
    Albalkhi, Ibrahem
    Serag, Ibrahim
    Sarhan, Khalid
    Abujaber, Ahmad A.
    Abd-Alrazaq, Alaa
    Yassin, Mohamed A.
    [J]. BLOOD REVIEWS, 2023, 62
  • [5] A review of artificial intelligence applications for motion tracking in radiotherapy
    Mylonas, Adam
    Booth, Jeremy
    Nguyen, Doan Trang
    [J]. JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2021, 65 (05) : 596 - 611
  • [6] Applications of artificial intelligence and machine learning in orthodontics: a scoping review
    Yashodhan M. Bichu
    Ismaeel Hansa
    Aditi Y. Bichu
    Pratik Premjani
    Carlos Flores-Mir
    Nikhilesh R. Vaid
    [J]. Progress in Orthodontics, 22
  • [7] Artificial Intelligence Applications in Neonatal Critical Care: A Scoping Review
    Sakore, Surekha Satish
    Devi, Seeta
    Mahapure, Prachi
    Kamble, Meghana
    Jadhav, Prachi
    [J]. JOURNAL OF CLINICAL NEONATOLOGY, 2024, 13 (03) : 102 - 109
  • [8] Applications of artificial intelligence and machine learning in orthodontics: a scoping review
    Bichu, Yashodhan M.
    Hansa, Ismaeel
    Bichu, Aditi Y.
    Premjani, Pratik
    Flores-Mir, Carlos
    Vaid, Nikhilesh R.
    [J]. PROGRESS IN ORTHODONTICS, 2021, 22 (01)
  • [9] Artificial Intelligence Applications in Health Care Practice: Scoping Review
    Sharma, Malvika
    Savage, Carl
    Nair, Monika
    Larsson, Ingrid
    Svedberg, Petra
    Nygren, Jens M.
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (10)
  • [10] Applications of Artificial Intelligence to Obesity Research: Scoping Review of Methodologies
    An, Ruopeng
    Shen, Jing
    Xiao, Yunyu
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (12)