Clean affinity matrix induced hyper-Laplacian regularization for unsupervised multi-view feature selection

被引:0
|
作者
Song, Peng [1 ]
Zhou, Shixuan [1 ]
Mu, Jinshuai [1 ]
Duan, Meng [1 ]
Yu, Yanwei [2 ]
Zheng, Wenming [3 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
[2] Ocean Univ China, Coll Comp Sci & Technol, Qingdao 266400, Peoples R China
[3] Southeast Univ, Key Lab Child Dev & Learning Sci, Minist Educ, Nanjing 210096, Peoples R China
关键词
Feature selection; Hypergraph regularization; Consistency and inconsistency; Multi-view learning; ADAPTIVE SIMILARITY; GRAPH; FACTORIZATION; PROJECTIONS; CONSENSUS;
D O I
10.1016/j.ins.2024.121276
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most previous unsupervised multi-view feature selection (UMFS) methods have achieved appealing performance by exploring the consistency among multiple views. However, they have the following shortcomings: (1) They often fail to consider the potential inconsistency that might be caused by view-specific characteristics from the perspective of sparsity. (2) The previously learned hyper-graph might be affected by noise, thereby reducing the quality of the generated graph. To tackle these issues, this paper proposes a clean affinity matrix induced hyper-Laplacian regularization (CAHR) method for UMFS. Firstly, the initial affinity matrix is decomposed into the consistent and inconsistent parts, then a novel diversity penalty term is introduced to enforce the sparsity of the inconsistent part across views, thereby making the consistent part be cleaner. Secondly, a unified affinity matrix is generated by fusing the consistent factors of the initial affinity matrix in a self-weighted manner, thereby considering the consistency of multi-view data. Based on the unified affinity matrix, a hyper-Laplacian matrix is further constructed, which can maintain high-order manifold structure of data. Finally, a loss function is designed to find the best mapping for feature selection. Comprehensive experiments demonstrate that the proposed method significantly outperforms several state-of-the-art UMFS methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Adaptive Similarity Embedding for Unsupervised Multi-View Feature Selection
    Wan, Yuan
    Sun, Shengzi
    Zeng, Cheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (10) : 3338 - 3350
  • [22] Online unsupervised multi-view feature selection with adaptive neighbors
    Ai, Yihao
    Zhong, Guo
    Chen, Tingjian
    Yuan, Haoliang
    Lai, Loi Lei
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2025, 23 (01)
  • [23] Consensus learning guided multi-view unsupervised feature selection
    Tang, Chang
    Chen, Jiajia
    Liu, Xinwang
    Li, Miaomiao
    Wang, Pichao
    Wang, Minhui
    Lu, Peng
    KNOWLEDGE-BASED SYSTEMS, 2018, 160 : 49 - 60
  • [24] Unsupervised Multi-View Feature Selection for Tumor Subtype Identification
    Imangaliyev, Sultan
    Levin, Evgeni
    ACM-BCB' 2017: PROCEEDINGS OF THE 8TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY,AND HEALTH INFORMATICS, 2017, : 491 - 499
  • [25] Hyper-Laplacian Regularized Concept Factorization in Low-Rank Tensor Space for Multi-View Clustering
    Yu, Zixiao
    Fu, Lele
    Chen, Yongyong
    Cai, Zhiling
    Chao, Guoqing
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [26] Consensus and discriminative non-negative matrix factorization for multi-view unsupervised feature selection
    Duan, Meng
    Song, Peng
    Zhou, Shixuan
    Mu, Jinshuai
    Liu, Zhaowei
    DIGITAL SIGNAL PROCESSING, 2024, 154
  • [27] Multi-view Laplacian Sparse Feature Selection for Web Image Annotation
    Shi Caijuan
    Ruan Qiuqi
    An Gaoyun
    2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 1026 - 1029
  • [28] Multi-level correlation learning for multi-view unsupervised feature selection
    Wu, Jian-Sheng
    Gong, Jun-Xiao
    Liu, Jing-Xin
    Min, Weidong
    KNOWLEDGE-BASED SYSTEMS, 2023, 281
  • [29] Incremental unsupervised feature selection for dynamic incomplete multi-view data
    Huang, Yanyong
    Guo, Kejun
    Yi, Xiuwen
    Li, Zhong
    Li, Tianrui
    INFORMATION FUSION, 2023, 96 : 312 - 327
  • [30] Consistency-exclusivity guided unsupervised multi-view feature selection
    Zhou, Shixuan
    Song, Peng
    NEUROCOMPUTING, 2024, 569