Incremental unsupervised feature selection for dynamic incomplete multi-view data

被引:8
|
作者
Huang, Yanyong [1 ,5 ]
Guo, Kejun [1 ,5 ]
Yi, Xiuwen [2 ,3 ,5 ]
Li, Zhong [4 ,5 ]
Li, Tianrui [5 ,6 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Peoples R China
[2] JD Intelligent Cities Res, Beijing 100176, Peoples R China
[3] JD Intelligent Cities Business Unit, Beijing 100176, Peoples R China
[4] Minnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Peoples R China
[5] Fernuniv, Fac Math & Comp Sci, D-58097 Hagen, Germany
[6] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
基金
美国国家科学基金会;
关键词
Feature selection; Incremental learning; Dynamic incomplete multi-view data; Adaptive view fusion; ADAPTIVE SIMILARITY;
D O I
10.1016/j.inffus.2023.03.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view unsupervised feature selection has been proven to be efficient in reducing the dimensionality of multi-view unlabeled data with high dimensions. The previous methods assume that all views are complete. However, in real applications, the multi-view data are often incomplete, i.e., some views of instances are missing, which will result in the failure of these methods. Besides, while the data arrive in form of streams, these existing methods will suffer the issues of high storage cost and expensive computation time. To address these issues, we propose an Incremental Incomplete Multi-view Unsupervised Feature Selection method (I2MUFS) on incomplete multi-view streaming data. By jointly considering the consistent and complementary information across different views, I2MUFS embeds the unsupervised feature selection into an extended weighted non-negative matrix factorization model, which can learn a consensus clustering indicator matrix and fuse different latent feature matrices with adaptive view weights. Furthermore, we introduce the incremental learning mechanisms to develop an alternative iterative algorithm, where the feature selection matrix is incrementally updated, rather than recomputing on the entire updated data from scratch. A series of experiments are conducted to verify the effectiveness of the proposed method by comparing with several state-of-the-art methods. The experimental results demonstrate the effectiveness and efficiency of the proposed method in terms of the clustering metrics and the computational cost.
引用
收藏
页码:312 / 327
页数:16
相关论文
共 50 条
  • [1] Online Unsupervised Multi-view Feature Selection
    Shao, Weixiang
    He, Lifang
    Lu, Chun-Ta
    Wei, Xiaokai
    Yu, Philip S.
    [J]. 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1203 - 1208
  • [2] Generalized Multi-view Unsupervised Feature Selection
    Liu, Yue
    Zhang, Changqing
    Zhu, Pengfei
    Hu, Qinghua
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 469 - 478
  • [3] Hierarchical unsupervised multi-view feature selection
    Chen, Tingjian
    Yuan, Haoliang
    Yin, Ming
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (06)
  • [4] Multi-View Unsupervised Feature Selection with Dynamic Sample Space Structure
    Zhang, Leyuan
    Liu, Meiling
    Wang, Rifeng
    Du, Tingting
    Li, Jiaye
    [J]. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2645 - 2652
  • [5] Multi-View Unsupervised Feature Selection with Adaptive Similarity and View Weight
    Hou, Chenping
    Nie, Feiping
    Tao, Hong
    Yi, Dongyun
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (09) : 1998 - 2011
  • [6] Unsupervised Cross-View Feature Selection on incomplete data
    Xu, Yuanyuan
    Yin, Yu
    Wang, Jun
    Wei, Jinmao
    Liu, Jian
    Yao, Lina
    Zhang, Wenjie
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 234
  • [7] Joint Multi-View Unsupervised Feature Selection and Graph Learning
    Fang, Si-Guo
    Huang, Dong
    Wang, Chang-Dong
    Tang, Yong
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 16 - 31
  • [8] MIXED SPARSITY REGULARIZED MULTI-VIEW UNSUPERVISED FEATURE SELECTION
    Wangila, Kennedy W.
    Gao, Ke
    Zhu, Pengfei
    Hu, Qinghua
    Zhang, Changqing
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1930 - 1934
  • [9] Low Redundancy Learning for Unsupervised Multi-view Feature Selection
    Jia, Hong
    Huang, Jian
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 179 - 190
  • [10] Consensus learning guided multi-view unsupervised feature selection
    Tang, Chang
    Chen, Jiajia
    Liu, Xinwang
    Li, Miaomiao
    Wang, Pichao
    Wang, Minhui
    Lu, Peng
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 160 : 49 - 60