Compactly Supported Distributions on p-Adic Lie Groups

被引:0
|
作者
Ban, Dubravka [1 ]
Roberts, Jeremiah [1 ]
机构
[1] Southern Illinois Univ, Sch Math & Stat Sci, 1245 Lincoln Dr, Carbondale, IL 62901 USA
关键词
p-adic Lie groups; Iwasawa algebra; distributions; Banach representation; principal series; Frobenius reciprocity; PRINCIPAL SERIES; REPRESENTATIONS;
D O I
10.1134/S2070046624030014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a finite extension of Q(p) and let G be a p-adic Lie group. In this paper, we define the Iwasawa algebra K[[G]] and prove that it is isomorphic to the convolution algebra of compactly supported distributions on G. This has important applications in the theory of admissible representations of G on p-adic Banach spaces. In particular, we prove the Frobenius reciprocity for continuous principal series representations.
引用
收藏
页码:201 / 218
页数:18
相关论文
共 50 条
  • [1] p-adic Lie groups
    Hunacek, Mark
    [J]. MATHEMATICAL GAZETTE, 2014, 98 (541): : 165 - 166
  • [2] Integrating on p-adic Lie groups
    du Sautoy, MPF
    Everest, GR
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1998, 103 (1) : 207 - 235
  • [3] On non-compactly supported p-adic wavelets
    Evdokimov, S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 1260 - 1266
  • [4] Approximation by p-adic Lie groups
    Glöckner, H
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2002, 44 : 231 - 239
  • [5] Uniscalar p-adic Lie groups
    Glöckner, H
    Willis, GA
    [J]. FORUM MATHEMATICUM, 2001, 13 (03) : 413 - 421
  • [6] Invariant measures on p-adic Lie groups: the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups
    Aniello, Paolo
    L'Innocente, Sonia
    Mancini, Stefano
    Parisi, Vincenzo
    Svampa, Ilaria
    Winter, Andreas
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [7] ENDOMORPHISM ALGEBRAS OF ADMISSIBLE p-ADIC REPRESENTATIONS OF p-ADIC LIE GROUPS
    Dospinescu, Gabriel
    Schraen, Benjamin
    [J]. REPRESENTATION THEORY, 2013, 17 : 237 - 246
  • [8] Definable groups and compact p-adic Lie groups
    Onshuus, A.
    Pillay, A.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 : 233 - 247
  • [9] Hochschild cohomology and p-adic Lie groups
    Sorensen, Claus
    [J]. MUENSTER JOURNAL OF MATHEMATICS, 2021, 14 (01): : 101 - 122
  • [10] Scale functions on p-adic Lie groups
    Glockner, H
    [J]. MANUSCRIPTA MATHEMATICA, 1998, 97 (02) : 205 - 215