GROUND STATE SOLUTIONS FOR NONLINEAR SCHRODINGER-BOPP-PODOLSKY BOPP-PODOLSKY SYSTEMS WITH NONPERIODIC POTENTIALS

被引:0
|
作者
Jiang, Qiaoyun [1 ]
Li, Lin [1 ]
Chen, Shangjie [1 ]
Siciliano, Gaetano [2 ]
机构
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[2] Univ Bari, Dipartimento Matemat, Via E Orabona 4, I-70215 Bari, Italy
基金
中国国家自然科学基金; 巴西圣保罗研究基金会;
关键词
Schrodinger-Bopp-Podolsky equation; variational method; Nehari manifold; critical growth; POISSON SYSTEMS; EQUATIONS; FOUNDATIONS;
D O I
10.58997/ejde.2024.43
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the existence of ground-state solutions for the Schrodinger-Bopp-Podolsky equations -Delta u + V(x)u + phi u = f(x,u) in R-3 -Delta phi + a(2)Delta(2)phi = 4 pi u(2) in R-3, where V is an element of C(R-3,R) has different forms on the half spaces, i.e. V(x) = V-1(x) for x(1 )> 0, and V(x) = V-2(x) for x(1 )< 0, where V-1,V-2 is an element of C(R-3) are periodic in each coordinate. The nonlinearity f is superlinear at infinity with subcritical or critical growth.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [41] Multiple solutions and profile description for a nonlinear Schrodinger-Bopp-Podolsky-Proca system on a manifold
    d'Avenia, Pietro
    Ghimenti, Marco G.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [42] The Existence of Ground State Solutions for a Schrödinger–Bopp–Podolsky System with Convolution Nonlinearity
    Yao Xiao
    Sitong Chen
    Muhua Shu
    The Journal of Geometric Analysis, 2023, 33
  • [43] Pauli-Villars regularization elucidated in Bopp-Podolsky's generalized electrodynamics
    Ji, Chueng-Ryong
    Suzuki, Alfredo Takashi
    Sales, Jorge Henrique
    Thibes, Ronaldo
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (10):
  • [44] de Broglie-Proca and Bopp-Podolsky massive photon gases in cosmology
    Cuzinatto, R. R.
    de Morais, E. M.
    Medeiros, L. G.
    Naldoni de Souza, C.
    Pimentel, B. M.
    EPL, 2017, 118 (01)
  • [45] Existence and Multiplicity of Solutions for the Schrödinger–Bopp–Podolsky System
    Xueqin Peng
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 3423 - 3468
  • [46] Nehari type ground state solution for schrÖdinger-bopp-podolsky system
    Li, Lin
    Tang, Xianhua
    1600, Politechnica University of Bucharest, Splaiul Independentei 313 - Sector 6, Bucharest, 77206, Romania (82): : 139 - 152
  • [47] Normalized Solutions for the Critical Schrödinger–Bopp–Podolsky System
    Xueqin Peng
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [48] Nonlinear Schr?dinger equation in the Bopp-Podolsky electrodynamics: Global boundedness, blow-up and no scattering in the energy space
    Gao, Yanfang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 357 : 64 - 97
  • [49] Normalized Solutions for the Critical Schrödinger-Bopp-Podolsky System
    Peng, Xueqin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
  • [50] Multiple solutions and profile description for a nonlinear Schrödinger–Bopp–Podolsky–Proca system on a manifold
    Pietro d’Avenia
    Marco G. Ghimenti
    Calculus of Variations and Partial Differential Equations, 2022, 61