GROUND STATE SOLUTIONS FOR NONLINEAR SCHRODINGER-BOPP-PODOLSKY BOPP-PODOLSKY SYSTEMS WITH NONPERIODIC POTENTIALS

被引:0
|
作者
Jiang, Qiaoyun [1 ]
Li, Lin [1 ]
Chen, Shangjie [1 ]
Siciliano, Gaetano [2 ]
机构
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[2] Univ Bari, Dipartimento Matemat, Via E Orabona 4, I-70215 Bari, Italy
基金
中国国家自然科学基金; 巴西圣保罗研究基金会;
关键词
Schrodinger-Bopp-Podolsky equation; variational method; Nehari manifold; critical growth; POISSON SYSTEMS; EQUATIONS; FOUNDATIONS;
D O I
10.58997/ejde.2024.43
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the existence of ground-state solutions for the Schrodinger-Bopp-Podolsky equations -Delta u + V(x)u + phi u = f(x,u) in R-3 -Delta phi + a(2)Delta(2)phi = 4 pi u(2) in R-3, where V is an element of C(R-3,R) has different forms on the half spaces, i.e. V(x) = V-1(x) for x(1 )> 0, and V(x) = V-2(x) for x(1 )< 0, where V-1,V-2 is an element of C(R-3) are periodic in each coordinate. The nonlinearity f is superlinear at infinity with subcritical or critical growth.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [31] Viable wormhole solution in Bopp-Podolsky electrodynamics
    Frizo, D. A.
    de Melo, C. A. M.
    Medeiros, L. G.
    Neves, Juliano C. S.
    ANNALS OF PHYSICS, 2023, 457
  • [32] The existence of nontrivial solution of a class of Schrodinger-Bopp-Podolsky system with critical growth
    Yang, Jie
    Chen, Haibo
    Liu, Senli
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [33] Existence and finite time blow-up for nonlinear Schrodinger equations in the Bopp-Podolsky electrodynamics
    Zheng, Peiwen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)
  • [34] Bopp-Podolsky black holes and the no-hair theorem
    Cuzinatto, R. R.
    de Melo, C. A. M.
    Medeiros, L. G.
    Pimentel, B. M.
    Pompeia, P. J.
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (01):
  • [35] Existence and limit behavior of least energy solutions to constrained Schrodinger-Bopp-Podolsky systems in R3
    Ramos, Gustavo de Paula
    Siciliano, Gaetano
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [36] Sign-changing solutions for a class of Schrodinger-Bopp-Podolsky system with concave-convex nonlinearities
    Zhang, Ziheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [37] ELECTRO-MAGNETO-STATIC STUDY OF THE NONLINEAR SCHRODINGER EQUATION COUPLED WITH BOPP-PODOLSKY ELECTRODYNAMICS IN THE PROCA SETTING
    Hebey, Emmanuel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (11) : 6683 - 6712
  • [38] Existence of Least-Energy Sign-Changing Solutions for the Schrodinger-Bopp-Podolsky System with Critical Growth
    Hu, Yi-Xin
    Wu, Xing-Ping
    Tang, Chun-Lei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [39] Ground state solutions of the non-autonomous Schrödinger–Bopp–Podolsky system
    Sitong Chen
    Lin Li
    Vicenţiu D. Rădulescu
    Xianhua Tang
    Analysis and Mathematical Physics, 2022, 12
  • [40] Self-interaction in Bopp-Podolsky electrodynamics: Spacetimes with angular defects
    Zayats, Alexei E.
    PHYSICAL REVIEW D, 2016, 94 (10)