Early detection of arc faults in DC microgrids using wavelet-based feature extraction and deep learning

被引:0
|
作者
Flaifel, Ameerah Abdulwahhab [1 ]
Mohammed, Abbas Fadel [2 ]
Abd, Fatima kadhem [2 ]
Enad, Mahmood H. [2 ]
Sabry, Ahmad H. [3 ]
机构
[1] Al Furat Al Awsat Tech Univ, Tech Inst Karbala, Dept Renewable Energy Tech, Najaf, Iraq
[2] Al Furat Al Awsat Tech Univ, Tech Inst Karbala, Dept Elect Tech, Najaf, Iraq
[3] Shatt Al Arab Univ Coll, Med Instrumentat Engn Tech, Basra, Iraq
关键词
Autoencoders; Fault detection; Cassie arc model; Anomaly detection; Wavelet transform; Deep learning;
D O I
10.1007/s11761-024-00420-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents an approach for anomaly detection using autoencoders and wavelets to identify arc faults in a DC power system, where Cassie arc model is used for synthetic arc fault generation. The system uses a deep learning technique called an autoencoder to detect anomalies in the signal. The autoencoder is trained on normal, fault-free data. It can then detect faults by identifying deviations from the normal data. The work compares the effectiveness of using raw data versus wavelet-filtered data for training the autoencoder. The results show that wavelet-filtered data leads to better performance. In one test, the autoencoder using wavelet-filtered data achieved a 97.52% probability of detecting faults, while the autoencoder using raw data achieved only a 57.85% probability. The results demonstrated that wavelet-filtered data can significantly improve the performance of autoencoder-based anomaly detection.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 50 条