Early detection of arc faults in DC microgrids using wavelet-based feature extraction and deep learning

被引:0
|
作者
Flaifel, Ameerah Abdulwahhab [1 ]
Mohammed, Abbas Fadel [2 ]
Abd, Fatima kadhem [2 ]
Enad, Mahmood H. [2 ]
Sabry, Ahmad H. [3 ]
机构
[1] Al Furat Al Awsat Tech Univ, Tech Inst Karbala, Dept Renewable Energy Tech, Najaf, Iraq
[2] Al Furat Al Awsat Tech Univ, Tech Inst Karbala, Dept Elect Tech, Najaf, Iraq
[3] Shatt Al Arab Univ Coll, Med Instrumentat Engn Tech, Basra, Iraq
关键词
Autoencoders; Fault detection; Cassie arc model; Anomaly detection; Wavelet transform; Deep learning;
D O I
10.1007/s11761-024-00420-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents an approach for anomaly detection using autoencoders and wavelets to identify arc faults in a DC power system, where Cassie arc model is used for synthetic arc fault generation. The system uses a deep learning technique called an autoencoder to detect anomalies in the signal. The autoencoder is trained on normal, fault-free data. It can then detect faults by identifying deviations from the normal data. The work compares the effectiveness of using raw data versus wavelet-filtered data for training the autoencoder. The results show that wavelet-filtered data leads to better performance. In one test, the autoencoder using wavelet-filtered data achieved a 97.52% probability of detecting faults, while the autoencoder using raw data achieved only a 57.85% probability. The results demonstrated that wavelet-filtered data can significantly improve the performance of autoencoder-based anomaly detection.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 50 条
  • [21] Wavelet-based feature extraction from character images
    Park, JH
    Oh, IS
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 2003, 2690 : 1092 - 1096
  • [22] Wavelet-based feature extraction for DNA microarray classification
    Ahmad M. Sarhan
    Artificial Intelligence Review, 2013, 39 : 237 - 249
  • [23] Local Gabor Wavelet-Based Feature Extraction and Evaluation
    Malathi, T.
    Bhuyan, M. K.
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND INFORMATICS (ICACNI 2015), VOL 1, 2016, 43 : 181 - 189
  • [24] Wavelet-based analysis and detection of traveling waves due to DC faults in LCC HVDC systems
    da Silva, Daniel Marques
    Costa, Flavio B.
    Miranda, Vladimiro
    Leite, Helder
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 104 : 291 - 300
  • [25] Classifying Mass Spectral Data Using SVM and Wavelet-Based Feature Extraction
    Liyen, Wong
    Muyeba, Maybin K.
    Keane, John A.
    Gong, Zhiguo
    Edwards-Jones, Valerie
    ACTIVE MEDIA TECHNOLOGY, AMT 2013, 2013, 8210 : 413 - 422
  • [26] Content-based image retrieval using wavelet-based feature extraction method
    Sun, YQ
    Ozawa, S
    CISST'03: PROCEEDING OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS AND TECHNOLOGY, VOLS 1 AND 2, 2003, : 134 - 138
  • [27] A new wavelet-based method for detection of high impedance faults
    Mokhtari, H.
    Aghatehrani, R.
    2005 INTERNATIONAL CONFERENCE ON FUTURE POWER SYSTEMS (FPS), 2005, : 274 - 279
  • [28] Wavelet-based Feature Extraction Algorithm for an Iris Recognition System
    Panganiban, Ayra
    Linsangan, Noel
    Caluyo, Felicito
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2011, 7 (03): : 425 - 434
  • [29] WAVELET-BASED FEATURE EXTRACTION FOR BEHAVIOR RECOGNITION IN MOBILE ROBOTS
    Jin, Xin
    Mukherjee, Kushal
    Gupta, Shalabh
    Ray, Asok
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2010, VOL 1, 2010, : 875 - 882
  • [30] WAVELET-BASED FEATURE EXTRACTION TECHNIQUE FOR FRUIT SHAPE CLASSIFICATION
    Riyadi, Slamet
    Ishak, Asnor Juraiza
    Mustafa, Mohd Marzuki
    Hussain, Aini
    2008 5TH INTERNATIONAL SYMPOSIUM ON MECHATRONICS & ITS APPLICATIONS, SYMPOSIUM PROCEEDINGS, 2008, : 376 - 380