Early detection of arc faults in DC microgrids using wavelet-based feature extraction and deep learning

被引:0
|
作者
Flaifel, Ameerah Abdulwahhab [1 ]
Mohammed, Abbas Fadel [2 ]
Abd, Fatima kadhem [2 ]
Enad, Mahmood H. [2 ]
Sabry, Ahmad H. [3 ]
机构
[1] Al Furat Al Awsat Tech Univ, Tech Inst Karbala, Dept Renewable Energy Tech, Najaf, Iraq
[2] Al Furat Al Awsat Tech Univ, Tech Inst Karbala, Dept Elect Tech, Najaf, Iraq
[3] Shatt Al Arab Univ Coll, Med Instrumentat Engn Tech, Basra, Iraq
关键词
Autoencoders; Fault detection; Cassie arc model; Anomaly detection; Wavelet transform; Deep learning;
D O I
10.1007/s11761-024-00420-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents an approach for anomaly detection using autoencoders and wavelets to identify arc faults in a DC power system, where Cassie arc model is used for synthetic arc fault generation. The system uses a deep learning technique called an autoencoder to detect anomalies in the signal. The autoencoder is trained on normal, fault-free data. It can then detect faults by identifying deviations from the normal data. The work compares the effectiveness of using raw data versus wavelet-filtered data for training the autoencoder. The results show that wavelet-filtered data leads to better performance. In one test, the autoencoder using wavelet-filtered data achieved a 97.52% probability of detecting faults, while the autoencoder using raw data achieved only a 57.85% probability. The results demonstrated that wavelet-filtered data can significantly improve the performance of autoencoder-based anomaly detection.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 50 条
  • [1] Wavelet-Based Detection of Transients Induced by DC Faults Using Boundary Protection Principle
    Silva, D. M.
    Costa, F. B.
    Franca, R. L. S.
    Junior, F. C. S.
    [J]. 2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [2] Quickest Detection of Series Arc Faults on DC Microgrids
    Gajula, Kaushik
    Le, Vu
    Yao, Xiu
    Zou, Shaofeng
    Herrera, Luis
    [J]. 2021 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2021, : 796 - 801
  • [3] An Empiric Analysis of Wavelet-Based Feature Extraction on Deep Learning and Machine Learning Algorithms for Arrhythmia Classification
    Singh, Ritu
    Rajpal, Navin
    Mehta, Rajesh
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2021, 6 (06): : 25 - 34
  • [4] Wavelet-based Fractal Feature Extraction for Microcalcification Detection in Mammograms
    Zhang, Ping
    Agyepong, Kwabena
    [J]. IEEE SOUTHEASTCON 2010: ENERGIZING OUR FUTURE, 2010, : 147 - 150
  • [5] Detection and Localization of Series Arc Faults in DC Microgrids Using Kalman Filter
    Gajula, Kaushik
    Herrera, Luis
    [J]. IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2021, 9 (03) : 2589 - 2596
  • [6] Series DC Arc Fault Detection Using a Wavelet-Based Filter Bank with Statistical Analysis
    Yeager, Joseph
    Hsieh, Hsin-Che
    Baek, Seunghoon
    Lai, Jih-Sheng
    [J]. 2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2022,
  • [7] Intelligent Fault Detection Scheme for Microgrids With Wavelet-Based Deep Neural Networks
    Yu, James J. Q.
    Hou, Yunhe
    Lam, Albert Y. S.
    Li, Victor O. K.
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (02) : 1694 - 1703
  • [8] WAVELET-BASED FEATURE EXTRACTION FOR MORTALITY PROJECTION
    Hainaut, Donatien
    Denuit, Michel
    [J]. ASTIN BULLETIN, 2020, 50 (03): : 675 - 707
  • [9] Wavelet-Based Feature Extraction for Handwritten Numerals
    Romero, Diego
    Ruedin, Ana
    Seijas, Leticia
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2009, PROCEEDINGS, 2009, 5716 : 374 - 383
  • [10] Wavelet-based feature extraction for EEG classification
    Dixon, TL
    Livezey, GT
    [J]. PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 18, PTS 1-5, 1997, 18 : 1003 - 1004