Vortex-induced vibration dynamic characteristics monitoring with AI-based target object detection for long-span bridges

被引:0
|
作者
Qin, Jingxi [1 ]
Zhang, Mingjin [2 ,3 ,5 ]
Yuan, Renan [4 ]
Ti, Zilong [2 ,3 ]
Jiang, Fanying [2 ]
机构
[1] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90024 USA
[2] Southwest Jiaotong Univ, Dept Bridge Engn, Chengdu 610031, Peoples R China
[3] Southwest Jiaotong Univ, State Key Lab Bridge Intelligent & Green Construct, Chengdu 610031, Peoples R China
[4] China Railway Major Bridge Reconnaissance & Design, Wuhan 430000, Peoples R China
[5] Southwest Jiaotong Univ, Res Ctr Wind Engn, Chengdu, Peoples R China
关键词
Structural health monitoring; Vortex-induced vibration; Long-span bridges; Machine learning; Multi-object tracking; Camera calibration;
D O I
10.1016/j.istruc.2024.106615
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This research proposes an innovative framework for monitoring bridge Vortex-induced Vibration (VIV) dynamic characteristics utilizing AI-based machine-learning target object detection and tracking techniques with keypoint detection. Two camera calibration methods are implemented for cases with and without intrinsic and extrinsic camera setup information based on homography matrix conversion and distance-based conversion. The framework is verified on a video recording of a real-bridge VIV event and a simulation animation of bridge VIV with a peak/trough-based statistical method for calculating VIV frequency and amplitude. Accurate detection is achieved in both cases with short video durations. The framework demonstrates great potential for real-time bridge VIV monitoring, requiring minimal camera calibration and a straightforward device setup. It offers reliable and accurate results while remaining cost-effective.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Cause investigation of high-mode vortex-induced vibration in a long-span suspension bridge
    Hwang, You Chan
    Kim, Sunjoong
    Kim, Ho-Kyung
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2020, 16 (01) : 84 - 93
  • [42] Vortex-induced vibration characteristics of twin-box girder section in long-span bridge: A numerical evaluation method
    Duan, Qingsong
    Shang, Jingmiao
    Ma, Cunming
    Li, Zhiguo
    PHYSICS OF FLUIDS, 2025, 37 (01)
  • [43] Vortex-Induced Vibration Suppression of Bridges by Inerter-Based Dynamic Vibration Absorbers
    Chen, Junjie
    Chen, Michael Z. Q.
    Hu, Yinlong
    SHOCK AND VIBRATION, 2021, 2021 (2021)
  • [44] Multi-mode vortex-induced vibration control of long-span bridges by using distributed tuned mass damper inerters (DTMDIs)
    Xu, Kun
    Dai, Qian
    Bi, Kaiming
    Fang, Genshen
    Zhao, Lin
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2022, 224
  • [45] Wind induced dynamic response of long-span bridges
    Petrov, AA
    STRUCTURAL DYNAMICS, VOLS. 1 & 2, 1996, : 321 - 324
  • [46] Vortex-Induced Force Identification of a Long-Span Bridge Based on Field Measurement Data
    Jiang, S. J.
    Xu, Y. L.
    Zhu, J.
    Zhang, G. Q.
    Dan, D. H.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2023, 2023
  • [47] Reliability Evaluation of Vortex-Induced Vibration for a Long-Span Arch Bridge (vol 23, 05018002, 2018)
    Li, Lingyao
    Wu, Teng
    He, Xuhui
    Hao, Jianming
    Wang, Hanfeng
    Xu, Hanyong
    JOURNAL OF BRIDGE ENGINEERING, 2018, 23 (10)
  • [48] Ride comfort assessment of road vehicle running on long-span bridge subjected to vortex-induced vibration
    Yu, Helu
    Wang, Bin
    Zhang, Guoqing
    Li, Yongle
    Chen, Xingyu
    WIND AND STRUCTURES, 2020, 31 (05) : 393 - 402
  • [49] Study on Vortex-Induced Vibration Amplitude Thresholds of High-Speed Railway Long-Span Bridge
    Zhao, Hui-Dong
    Chen, Liang-Jiang
    Xiao, Hai-Zhu
    Yan, Wu-Tong
    Bridge Construction, 2022, 52 (01) : 49 - 55
  • [50] Probabilistic vortex-induced vibration occurrence prediction of the twin-box girder for long-span cable-stayed bridges based on wind tunnel tests
    Ge, Baixue
    Ma, Rujin
    Li, Fangkuan
    Hu, Xiaohong
    Chen, Airong
    ENGINEERING STRUCTURES, 2022, 262