Vortex-induced vibration dynamic characteristics monitoring with AI-based target object detection for long-span bridges

被引:0
|
作者
Qin, Jingxi [1 ]
Zhang, Mingjin [2 ,3 ,5 ]
Yuan, Renan [4 ]
Ti, Zilong [2 ,3 ]
Jiang, Fanying [2 ]
机构
[1] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90024 USA
[2] Southwest Jiaotong Univ, Dept Bridge Engn, Chengdu 610031, Peoples R China
[3] Southwest Jiaotong Univ, State Key Lab Bridge Intelligent & Green Construct, Chengdu 610031, Peoples R China
[4] China Railway Major Bridge Reconnaissance & Design, Wuhan 430000, Peoples R China
[5] Southwest Jiaotong Univ, Res Ctr Wind Engn, Chengdu, Peoples R China
关键词
Structural health monitoring; Vortex-induced vibration; Long-span bridges; Machine learning; Multi-object tracking; Camera calibration;
D O I
10.1016/j.istruc.2024.106615
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This research proposes an innovative framework for monitoring bridge Vortex-induced Vibration (VIV) dynamic characteristics utilizing AI-based machine-learning target object detection and tracking techniques with keypoint detection. Two camera calibration methods are implemented for cases with and without intrinsic and extrinsic camera setup information based on homography matrix conversion and distance-based conversion. The framework is verified on a video recording of a real-bridge VIV event and a simulation animation of bridge VIV with a peak/trough-based statistical method for calculating VIV frequency and amplitude. Accurate detection is achieved in both cases with short video durations. The framework demonstrates great potential for real-time bridge VIV monitoring, requiring minimal camera calibration and a straightforward device setup. It offers reliable and accurate results while remaining cost-effective.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Vortex-induced vibration analysis of a long-span arch bridge
    Tang, Chunping
    Zhang, Liangliang
    International Journal of Applied Mathematics and Statistics, 2013, 49 (19): : 324 - 332
  • [12] Study on The vortex-induced vibration of a long-span arch bridge
    Tang, Chunping
    Zhang, Liangliang
    MATERIALS SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING TECHNOLOGY, PTS 1 AND 2, 2014, 488-489 : 681 - +
  • [13] A novel strategy for mitigating the vortex-induced vibration of long-span bridges by using flexible membranes
    Xu, Haoyu
    Wang, Chaoqun
    Huang, Zhiwen
    Hua, Xugang
    Chen, Zhengqing
    ADVANCES IN STRUCTURAL ENGINEERING, 2024,
  • [14] Machine-learning-based prediction of vortex-induced vibration in long-span bridges using limited information
    Kim, Sunjoong
    Kim, Taeyong
    ENGINEERING STRUCTURES, 2022, 266
  • [15] Analysis of main factors influencing allowable magnitude of vertical vortex-induced vibration of long-span bridges
    Chen, Zheng-Qing
    Huang, Zhi-Wen
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2015, 28 (09): : 30 - 37
  • [16] Vortex-induced vibration of separated box girders for long-span cable-supported bridges: A review
    Zhu, Hongyu
    Du, Xiaoqing
    Dong, Haotian
    STRUCTURES, 2025, 71
  • [17] Vortex-induced vibration mitigation of long-span bridges with rotational damping: concept and design of damped outriggers
    Chen, Lin
    Liu, Zhanhang
    Zhao, Lin
    Sun, Limin
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2024, 57 (07): : 22 - 36
  • [18] Inversion Method of Vortex-Induced Vibration Amplitude for Long-Span Bridges with Partially Installed Noise Barrier
    Li Y.
    Pan J.
    Ti Z.
    Rao G.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2023, 58 (01): : 183 - 190
  • [19] Control of Vortex-Induced Vibration of a Long-Span Bridge by Inclined Railings
    Xin, Dabo
    Zhan, Jian
    Zhang, Hongfu
    Ou, Jinping
    JOURNAL OF BRIDGE ENGINEERING, 2021, 26 (12)
  • [20] Reliability Evaluation of Vortex-Induced Vibration for a Long-Span Arch Bridge
    Li, Lingyao
    Wu, Teng
    He, Xuhui
    Hao, Jianming
    Wang, Hanfeng
    Xu, Hanyong
    JOURNAL OF BRIDGE ENGINEERING, 2018, 23 (05)