3D axial and circumferential wall shear stress from 4D flow MRI data using a finite element method and a laplacian approach

被引:41
|
作者
Sotelo, Julio [1 ,2 ]
Dux-Santoy, Lydia [3 ]
Guala, Andrea [3 ]
Rodriguez-Palomares, Jose [3 ]
Evangelista, Arturo [3 ]
Sing-Long, Carlos [1 ,4 ,5 ,6 ,7 ]
Urbina, Jesus [1 ,8 ]
Mura, Joaquin [1 ]
Hurtado, Daniel E. [5 ,6 ,7 ,9 ]
Uribe, Sergio [1 ,5 ,6 ,7 ,8 ]
机构
[1] Pontificia Univ Catolica Chile, Biomed Imaging Ctr, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Dept Elect Engn, Sch Engn, Santiago, Chile
[3] Univ Autonoma Barcelona, Vall dHebron Inst Recerca, Hosp Univ Vall dHebron, Dept Cardiol, Barcelona, Spain
[4] Pontificia Univ Catolica Chile, Sch Engn, Math & Computat Engn, Santiago, Chile
[5] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Engn, Santiago, Chile
[6] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Med, Santiago, Chile
[7] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Biol Sci, Santiago, Chile
[8] Pontificia Univ Catolica Chile, Sch Med, Dept Radiol, Marcoleta 367, Santiago, Chile
[9] Pontificia Univ Catolica Chile, Dept Struct & Geotech Engn, Sch Engn, Santiago, Chile
关键词
4D flow MRI; finite elements; wall shear stress; axial wall shear stress; circumferential wall shear stress; BICUSPID AORTIC-VALVE; PHASE-CONTRAST MRI; THORACIC AORTA; ASCENDING AORTA; BLOOD-FLOW; QUANTIFICATION; HEMODYNAMICS; ATHEROSCLEROSIS; COMPUTATION; MECHANISMS;
D O I
10.1002/mrm.26927
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo decompose the 3D wall shear stress (WSS) vector field into its axial (WSSA) and circumferential (WSSC) components using a Laplacian finite element approach. MethodsWe validated our method with in silico experiments involving different geometries and a modified Poiseuille flow. We computed 3D maps of the WSS, WSSA, and WSSC using 4D flow MRI data obtained from 10 volunteers and 10 patients with bicuspid aortic valve (BAV). We compared our method with the centerline method. The mean value, standard deviation, root mean-squared error, and Wilcoxon signed rank test are reported. ResultsWe obtained an error <0.05% processing analytical geometries. We found good agreement between our method and the modified Poiseuille flow for the WSS, WSSA, and WSSC. We found statistically significance differences between our method and a 3D centerline method. In BAV patients, we found a 220% significant increase in the WSSC in the ascending aorta with respect to volunteers. ConclusionWe developed a novel methodology to decompose the WSS vector in WSSA and WSSC in 3D domains, using 4D flow MRI data. Our method provides a more robust quantification of WSSA and WSSC in comparison with other reported methods. Magn Reson Med 79:2816-2823, 2018. (c) 2017 International Society for Magnetic Resonance in Medicine.
引用
收藏
页码:2816 / 2823
页数:8
相关论文
共 50 条
  • [31] ON APPLICATION OF FINITE ELEMENT METHOD FOR APPROXIMATION OF 3D FLOW PROBLEMS
    Svacek, P.
    Horacek, J.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2015, 2015, : 175 - 182
  • [32] A Lagrangian finite element method for 3D compressible flow applications
    Cremonesi, Massimiliano
    Frangi, Attilio
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 311 : 374 - 392
  • [33] 3D Scene Flow from 4D Light Field Gradients
    Ma, Sizhuo
    Smith, Brandon M.
    Gupta, Mohit
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 681 - 698
  • [34] 3D finite element meshing from imaging data
    Zhang, YJ
    Bajaj, C
    Sohn, BS
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (48-49) : 5083 - 5106
  • [35] Minimum wall shear stress points and their underlying intra-aneurysmal flow structures of unruptured cerebral aneurysms on 4D flow MRI
    Futami, Kazuya
    Misaki, Kouichi
    Uno, Takehiro
    Nambu, Iku
    Tsutsui, Taishi
    Kamide, Tomoya
    Nakada, Mitsutoshi
    JOURNAL OF NEURORADIOLOGY, 2023, 50 (03) : 302 - 308
  • [36] Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning
    Berhane, Haben
    Scott, Michael
    Elbaz, Mohammed
    Jarvis, Kelly
    McCarthy, Patrick
    Carr, James
    Malaisrie, Chris
    Avery, Ryan
    Barker, Alex J.
    Robinson, Joshua D.
    Rigsby, Cynthia K.
    Markl, Michael
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (04) : 2204 - 2218
  • [37] Hierarchical Shape Distributions for Automatic Identification of 3D Diastolic Vortex Rings from 4D Flow MRI
    Elbaz, Mohammed S. M.
    Lelieveldt, Boudewijn P. F.
    van der Geest, Rob J.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT II, 2015, 9350 : 467 - 475
  • [38] Measurement of cortical thickness in 3D brain MRI data: Validation of the Laplacian method
    Haidar, H
    Soul, JS
    JOURNAL OF NEUROIMAGING, 2006, 16 (02) : 146 - 153
  • [39] Identification of the Inflow Zone of Unruptured Cerebral Aneurysms: Comparison of 4D Flow MRI and 3D TOF MRA Data
    Futami, K.
    Sano, H.
    Misaki, K.
    Nakada, M.
    Ueda, F.
    Hamada, J.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2014, 35 (07) : 1363 - 1370
  • [40] Editorial for "Multiyear Interval Changes in Aortic Wall Shear Stress in Patients With Bicuspid Aortic Valve Assessed by 4D Flow MRI"
    Guala, Andrea
    Ferrer-Cornet, Marta
    Dux-Santoy, Lydia
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (06) : 2590 - 2591