3D axial and circumferential wall shear stress from 4D flow MRI data using a finite element method and a laplacian approach

被引:41
|
作者
Sotelo, Julio [1 ,2 ]
Dux-Santoy, Lydia [3 ]
Guala, Andrea [3 ]
Rodriguez-Palomares, Jose [3 ]
Evangelista, Arturo [3 ]
Sing-Long, Carlos [1 ,4 ,5 ,6 ,7 ]
Urbina, Jesus [1 ,8 ]
Mura, Joaquin [1 ]
Hurtado, Daniel E. [5 ,6 ,7 ,9 ]
Uribe, Sergio [1 ,5 ,6 ,7 ,8 ]
机构
[1] Pontificia Univ Catolica Chile, Biomed Imaging Ctr, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Dept Elect Engn, Sch Engn, Santiago, Chile
[3] Univ Autonoma Barcelona, Vall dHebron Inst Recerca, Hosp Univ Vall dHebron, Dept Cardiol, Barcelona, Spain
[4] Pontificia Univ Catolica Chile, Sch Engn, Math & Computat Engn, Santiago, Chile
[5] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Engn, Santiago, Chile
[6] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Med, Santiago, Chile
[7] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Biol Sci, Santiago, Chile
[8] Pontificia Univ Catolica Chile, Sch Med, Dept Radiol, Marcoleta 367, Santiago, Chile
[9] Pontificia Univ Catolica Chile, Dept Struct & Geotech Engn, Sch Engn, Santiago, Chile
关键词
4D flow MRI; finite elements; wall shear stress; axial wall shear stress; circumferential wall shear stress; BICUSPID AORTIC-VALVE; PHASE-CONTRAST MRI; THORACIC AORTA; ASCENDING AORTA; BLOOD-FLOW; QUANTIFICATION; HEMODYNAMICS; ATHEROSCLEROSIS; COMPUTATION; MECHANISMS;
D O I
10.1002/mrm.26927
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo decompose the 3D wall shear stress (WSS) vector field into its axial (WSSA) and circumferential (WSSC) components using a Laplacian finite element approach. MethodsWe validated our method with in silico experiments involving different geometries and a modified Poiseuille flow. We computed 3D maps of the WSS, WSSA, and WSSC using 4D flow MRI data obtained from 10 volunteers and 10 patients with bicuspid aortic valve (BAV). We compared our method with the centerline method. The mean value, standard deviation, root mean-squared error, and Wilcoxon signed rank test are reported. ResultsWe obtained an error <0.05% processing analytical geometries. We found good agreement between our method and the modified Poiseuille flow for the WSS, WSSA, and WSSC. We found statistically significance differences between our method and a 3D centerline method. In BAV patients, we found a 220% significant increase in the WSSC in the ascending aorta with respect to volunteers. ConclusionWe developed a novel methodology to decompose the WSS vector in WSSA and WSSC in 3D domains, using 4D flow MRI data. Our method provides a more robust quantification of WSSA and WSSC in comparison with other reported methods. Magn Reson Med 79:2816-2823, 2018. (c) 2017 International Society for Magnetic Resonance in Medicine.
引用
收藏
页码:2816 / 2823
页数:8
相关论文
共 50 条
  • [11] Normal values of wall shear stress in the pulmonary artery from 4D flow data
    Julio A Sotelo
    Pablo Bächler
    Steren Chabert
    Daniel Hurtado
    Pablo Irarrazaval
    Cristian Tejos
    Sergio Uribe
    Journal of Cardiovascular Magnetic Resonance, 14 (Suppl 1)
  • [12] Volumetric segmentation-free method for rapid visualization of vascular wall shear stress using 4D flow MRI
    Masutani, Evan M.
    Contijoch, Francisco
    Kyubwa, Espoir
    Cheng, Joseph
    Alley, Marcus T.
    Vasanawala, Shreyas
    Hsiao, Albert
    MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (02) : 748 - 755
  • [13] Wall Shear Stress Estimation for 4D Flow MRI Using Navier-Stokes Equation Correction
    Zhang, Jiacheng
    Rothenberger, Sean M.
    Brindise, Melissa C.
    Markl, Michael
    Rayz, Vitaliy L.
    Vlachos, Pavlos P.
    ANNALS OF BIOMEDICAL ENGINEERING, 2022, 50 (12) : 1810 - 1825
  • [14] In Vivo Assessment of Wall Shear Stress in the Atherosclerotic Aorta Using Flow-Sensitive 4D MRI
    Harloff, Andreas
    Nussbaumer, Andrea
    Bauer, Simon
    Stalder, Aurelien F.
    Frydrychowicz, Alex
    Weiller, Cornelius
    Hennig, Juergen
    Markl, Michael
    MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (06) : 1529 - 1536
  • [15] Towards quantitative evaluation of wall shear stress from 4D flow imaging
    Levilly, Sebastien
    Castagna, Marco
    Idier, Jerome
    Bonnefoy, Felicien
    Le Touze, David
    Moussaoui, Said
    Paul-Gilloteaux, Perrine
    Serfaty, Jean-Michel
    MAGNETIC RESONANCE IMAGING, 2020, 74 : 232 - 243
  • [16] Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR
    Jonas Bürk
    Philipp Blanke
    Zoran Stankovic
    Alex Barker
    Maximilian Russe
    Julia Geiger
    Alex Frydrychowicz
    Mathias Langer
    Michael Markl
    Journal of Cardiovascular Magnetic Resonance, 14
  • [17] Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR
    Buerk, Jonas
    Blanke, Philipp
    Stankovic, Zoran
    Barker, Alex
    Russe, Maximilian
    Geiger, Julia
    Frydrychowicz, Alex
    Langer, Mathias
    Markl, Michael
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2012, 14
  • [18] 3D quantification of hemodynamics parameters of pulmonary artery and aorta using finite-element interpolations in 4D flow MR data
    Julio A Sotelo
    Jesus Urbina
    Israel Valverde
    Cristian Tejos
    Pablo Irarrazaval
    Daniel E Hurtado
    Sergio Uribe
    Journal of Cardiovascular Magnetic Resonance, 17 (Suppl 1)
  • [19] Quantification and comparison of 4D Flow MRI derived wall shear stress and MRE derived wall shear stiffness of abdominal aorta
    Venkata Sita Priyanka Illapani
    Julio Garcia
    Ria Mazumder
    Richard D White
    Michael Markl
    Arunark Kolipaka
    Journal of Cardiovascular Magnetic Resonance, 18 (Suppl 1)
  • [20] The impact of 4D flow displacement artifacts on wall shear stress estimation
    Schmidt, Simon
    Flassbeck, Sebastian
    Schmelter, Sonja
    Schmeyer, Ellen
    Ladd, Mark E.
    Schmitter, Sebastian
    MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (06) : 3154 - 3168