Frequency-Separated Attention Network for Image Super-Resolution

被引:1
|
作者
Qu, Daokuan [1 ,2 ]
Li, Liulian [3 ]
Yao, Rui [3 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
[2] Shandong Polytech Coll, Sch Energy & Mat Engn, Jining 272067, Peoples R China
[3] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 10期
关键词
densely connected structure; frequency-separated; channel-wise and spatial attention; image super-resolution;
D O I
10.3390/app14104238
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of deep convolutional neural networks has significantly improved the performance of super-resolution. Employing deeper networks to enhance the non-linear mapping capability from low-resolution (LR) to high-resolution (HR) images has inadvertently weakened the information flow and disrupted long-term memory. Moreover, overly deep networks are challenging to train, thus failing to exhibit the expressive capability commensurate with their depth. High-frequency and low-frequency features in images play different roles in image super-resolution. Networks based on CNNs, which should focus more on high-frequency features, treat these two types of features equally. This results in redundant computations when processing low-frequency features and causes complex and detailed parts of the reconstructed images to appear as smooth as the background. To maintain long-term memory and focus more on the restoration of image details in networks with strong representational capabilities, we propose the Frequency-Separated Attention Network (FSANet), where dense connections ensure the full utilization of multi-level features. In the Feature Extraction Module (FEM), the use of the Res ASPP Module expands the network's receptive field without increasing its depth. To differentiate between high-frequency and low-frequency features within the network, we introduce the Feature-Separated Attention Block (FSAB). Furthermore, to enhance the quality of the restored images using heuristic features, we incorporate attention mechanisms into the Low-Frequency Attention Block (LFAB) and the High-Frequency Attention Block (HFAB) for processing low-frequency and high-frequency features, respectively. The proposed network outperforms the current state-of-the-art methods in tests on benchmark datasets.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Residual shuffle attention network for image super-resolution
    Li, Zhiwei
    Zhang, Yaping
    Yang, Yuwei
    Journal of Physics: Conference Series, 2021, 2025 (01):
  • [22] Pixel attention convolutional network for image super-resolution
    Xin Wang
    Shufen Zhang
    Yuanyuan Lin
    Yanxia Lyu
    Jiale Zhang
    Neural Computing and Applications, 2023, 35 : 8589 - 8599
  • [23] A sparse lightweight attention network for image super-resolution
    Hongao Zhang
    Jinsheng Fang
    Siyu Hu
    Kun Zeng
    The Visual Computer, 2024, 40 (2) : 1261 - 1272
  • [24] Stratified attention dense network for image super-resolution
    Liu, Zhiwei
    Mao, Xiaofeng
    Huang, Ji
    Gan, Menghan
    Zhang, Yueyuan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (03) : 715 - 722
  • [25] Underwater Image Super-Resolution Using Frequency-Domain Enhanced Attention Network
    Liu, Xin
    Gu, Zhengxiang
    Ding, Haiming
    Zhang, Min
    Wang, Li
    IEEE ACCESS, 2024, 12 : 6136 - 6147
  • [26] IMAGE SUPER-RESOLUTION USING MULTI-RESOLUTION ATTENTION NETWORK
    Liu, Anqi
    Li, Sumei
    Chang, Yongli
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1610 - 1614
  • [27] Cross-resolution feature attention network for image super-resolution
    Liu, Anqi
    Li, Sumei
    Chang, Yongli
    VISUAL COMPUTER, 2023, 39 (09): : 3837 - 3849
  • [28] Cross-resolution feature attention network for image super-resolution
    Anqi Liu
    Sumei Li
    Yongli Chang
    The Visual Computer, 2023, 39 : 3837 - 3849
  • [29] Facial Image Super-Resolution Reconstruction Based on Separated Frequency Components
    Kim, Hyunduk
    Lee, Sang-Heon
    Sohn, Myoung-Kyu
    Kim, Dong-Ju
    Kim, Byungmin
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (06) : 1315 - 1322
  • [30] SRGAT: Single Image Super-Resolution With Graph Attention Network
    Yan, Yanyang
    Ren, Wenqi
    Hu, Xiaobin
    Li, Kun
    Shen, Haifeng
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4905 - 4918