Machine Learning-Enhanced Pairs Trading

被引:0
|
作者
Hadad, Eli [1 ]
Hodarkar, Sohail [2 ]
Lemeneh, Beakal [3 ]
Shasha, Dennis [2 ]
机构
[1] Univ Presbiteriana Mackenzie, Ctr Ciencias Sociais & Aplicadas, Rua Consolacao 930, BR-01302907 Sao Paulo, SP, Brazil
[2] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[3] Univ Rochester, 500 Joseph C Wilson Blvd, Rochester, NY 14627 USA
来源
FORECASTING | 2024年 / 6卷 / 02期
关键词
high-frequency data; pairs trading; forecasting; transformers; N-BEATS; N-HiTS; ARIMA; BiLSTM; C45; C53; C63; G12; STRATEGIES; LSTM; MECHANISM;
D O I
10.3390/forecast6020024
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Forecasting returns in financial markets is notoriously challenging due to the resemblance of price changes to white noise. In this paper, we propose novel methods to address this challenge. Employing high-frequency Brazilian stock market data at one-minute granularity over a full year, we apply various statistical and machine learning algorithms, including Bidirectional Long Short-Term Memory (BiLSTM) with attention, Transformers, N-BEATS, N-HiTS, Convolutional Neural Networks (CNNs), and Temporal Convolutional Networks (TCNs) to predict changes in the price ratio of closely related stock pairs. Our findings indicate that a combination of reversion and machine learning-based forecasting methods yields the highest profit-per-trade. Additionally, by allowing the model to abstain from trading when the predicted magnitude of change is small, profits per trade can be further increased. Our proposed forecasting approach, utilizing a blend of methods, demonstrates superior accuracy compared to individual methods for high-frequency data.
引用
下载
收藏
页码:434 / 455
页数:22
相关论文
共 50 条
  • [31] Machine learning-enhanced electrochemical sensors for food safety: Applications and perspectives
    Pervaiz, Wajeeha
    Afzal, Muhammad Hussnain
    Feng, Niu
    Peng, Xuewen
    Chen, Yiping
    Trends in Food Science and Technology, 2025, 156
  • [32] Machine Learning-Enhanced T Cell Neoepitope Discovery for Immunotherapy Design
    Martins, Joana
    Magalhaes, Carlos
    Rocha, Miguel
    Osorio, Nuno S.
    CANCER INFORMATICS, 2019, 18
  • [33] Direct Parameter Estimations from Machine Learning-Enhanced Quantum State Tomography
    Hsieh, Hsien-Yi
    Ning, Jingyu
    Chen, Yi-Ru
    Wu, Hsun-Chung
    Li Chen, Hua
    Wu, Chien-Ming
    Lee, Ray-Kuang
    SYMMETRY-BASEL, 2022, 14 (05):
  • [34] MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows
    Dral, Pavlo O.
    Ge, Fuchun
    Hou, Yi-Fan
    Zheng, Peikun
    Chen, Yuxinxin
    Barbatti, Mario
    Isayev, Olexandr
    Wang, Cheng
    Xue, Bao-Xin
    Pinheiro Jr, Max
    Su, Yuming
    Dai, Yiheng
    Chen, Yangtao
    Zhang, Lina
    Zhang, Shuang
    Ullah, Arif
    Zhang, Quanhao
    Ou, Yanchi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (03) : 1193 - 1213
  • [35] Machine Learning-enhanced Receive Processing for MU-MIMO OFDM Systems
    Goutay, Mathieu
    Aoudia, Faycal Ait
    Hoydis, Jakob
    Gorce, Jean-Marie
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 246 - 250
  • [36] Machine learning-enhanced PIV for analyzing microfiber-wall turbulence interactions
    Giurgiu, Vlad
    Beckedorff, Leonel
    Caridi, Giuseppe C.A.
    Lagemann, Christian
    Soldati, Alfredo
    International Journal of Multiphase Flow, 2024, 181
  • [37] Recent Advances in Machine Learning-Enhanced Joint Inversion of Seismic and Electromagnetic Data
    Jixiao Ma
    Yangfan Deng
    Xin Li
    Rui Guo
    Hongyu Zhou
    Maokun Li
    Surveys in Geophysics, 2025, 46 (1) : 197 - 225
  • [38] Machine learning-enhanced high-resolution exposure assessment of ultrafine particles
    Yudie Jianyao
    Hongyong Yuan
    Guofeng Su
    Jing Wang
    Wenguo Weng
    Xiaole Zhang
    Nature Communications, 16 (1)
  • [39] Machine learning-enhanced HRCT analysis for diagnosis and severity assessment in pediatric asthma
    De Filippo, Maria
    Fasola, Salvatore
    De Matteis, Federica
    Gorone, Maria Sole Prevedoni
    Preda, Lorenzo
    Votto, Martina
    Malizia, Velia
    Marseglia, Gian Luigi
    La Grutta, Stefania
    Licari, Amelia
    PEDIATRIC PULMONOLOGY, 2024,
  • [40] Machine Learning-Enhanced Radio Tomographic Device for Energy Optimization in Smart Buildings
    Styla, Michal
    Kiczek, Bartlomiej
    Klosowski, Grzegorz
    Rymarczyk, Tomasz
    Adamkiewicz, Przemyslaw
    Wojcik, Dariusz
    Cieplak, Tomasz
    ENERGIES, 2023, 16 (01)