Direct Parameter Estimations from Machine Learning-Enhanced Quantum State Tomography

被引:5
|
作者
Hsieh, Hsien-Yi [1 ]
Ning, Jingyu [1 ]
Chen, Yi-Ru [1 ]
Wu, Hsun-Chung [1 ]
Li Chen, Hua [2 ]
Wu, Chien-Ming [1 ]
Lee, Ray-Kuang [1 ,2 ,3 ,4 ]
机构
[1] Natl Tsing Hua Univ, Inst Photon Technol, Hsinchu 30013, Taiwan
[2] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
[3] Natl Ctr Theoret Sci, Phys Div, Taipei 10617, Taiwan
[4] Ctr Quantum Technol, Hsinchu 30013, Taiwan
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 05期
关键词
quantum machine-learning; quantum state tomography;
D O I
10.3390/sym14050874
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the power to find the best fit to arbitrarily complicated symmetry, machine-learning (ML)-enhanced quantum state tomography (QST) has demonstrated its advantages in extracting complete information about the quantum states. Instead of using the reconstruction model in training a truncated density matrix, we develop a high-performance, lightweight, and easy-to-install supervised characteristic model by generating the target parameters directly. Such a characteristic model-based ML-QST can avoid the problem of dealing with a large Hilbert space, but cab keep feature extractions with high precision, capturing the underlying symmetry in data. With the experimentally measured data generated from the balanced homodyne detectors, we compare the degradation information about quantum noise squeezed states predicted by the reconstruction and characteristic models; both are in agreement with the empirically fitting curves obtained from the covariance method. Such a ML-QST with direct parameter estimations illustrates a crucial diagnostic toolbox for applications with squeezed states, from quantum information process, quantum metrology, advanced gravitational wave detectors, to macroscopic quantum state generation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine Learning-Enhanced Pairs Trading
    Hadad, Eli
    Hodarkar, Sohail
    Lemeneh, Beakal
    Shasha, Dennis
    [J]. FORECASTING, 2024, 6 (02): : 434 - 455
  • [2] Quantum state tomography using quantum machine learning
    Innan, Nouhaila
    Siddiqui, Owais Ishtiaq
    Arora, Shivang
    Ghosh, Tamojit
    Kocak, Yasemin Poyraz
    Paragas, Dominic
    Galib, Abdullah Al Omar
    Khan, Muhammad Al-Zafar
    Bennai, Mohamed
    [J]. QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [3] Machine Learning-Enhanced Flexible Mechanical Sensing
    Wang, Yuejiao
    Adam, Mukhtar Lawan
    Zhao, Yunlong
    Zheng, Weihao
    Gao, Libo
    Yin, Zongyou
    Zhao, Haitao
    [J]. NANO-MICRO LETTERS, 2023, 15 (01)
  • [4] Machine Learning-Enhanced Flexible Mechanical Sensing
    Yuejiao Wang
    Mukhtar Lawan Adam
    Yunlong Zhao
    Weihao Zheng
    Libo Gao
    Zongyou Yin
    Haitao Zhao
    [J]. Nano-Micro Letters, 2023, 15
  • [5] Machine Learning-Enhanced Triboelectric Sensing Application
    Shang, Ruzhi
    Chen, Huamin
    Cai, Xu
    Shi, Xin
    Yang, Yanhui
    Wei, Xuan
    Wang, Jun
    Xu, Yun
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (07)
  • [6] Machine Learning-Enhanced Flexible Mechanical Sensing
    Yuejiao Wang
    Mukhtar Lawan Adam
    Yunlong Zhao
    Weihao Zheng
    Libo Gao
    Zongyou Yin
    Haitao Zhao
    [J]. Nano-Micro Letters, 2023, 15 (04) : 196 - 228
  • [7] Machine Learning for Data Reduction in Quantum State Tomography
    Liu, Ximin
    Lu, Sicong
    Wu, Rebing
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 227 - 231
  • [8] A machine learning-enhanced design optimizer for urban cooling
    Hao, Tongping
    Huang, Jianxiang
    He, Xinyu
    Li, Lishuai
    Jones, Phil
    [J]. INDOOR AND BUILT ENVIRONMENT, 2023, 32 (02) : 355 - 374
  • [9] Machine Learning-Enhanced Quantum Chemistry-Assisted Refinement of the Active Site Structure of Metalloproteins
    Gigli, Lucia
    Silva, Jose Malanho
    Cerofolini, Linda
    Macedo, Anjos L.
    Geraldes, Carlos F. G. C.
    Suturina, Elizaveta A.
    Calderone, Vito
    Fragai, Marco
    Parigi, Giacomo
    Ravera, Enrico
    Luchinat, Claudio
    [J]. INORGANIC CHEMISTRY, 2024, 63 (23) : 10713 - 10725
  • [10] State of the Art on Deep Learning-enhanced Rendering Methods
    Qi Wang
    Zhihua Zhong
    Yuchi Huo
    Hujun Bao
    Rui Wang
    [J]. Machine Intelligence Research, 2023, 20 : 799 - 821