A generalized k-independent set is a set of vertices such that the induced subgraph contains no trees with k-vertices, and the generalized k-independence number is the cardinality of a maximum k-independent set in G. Zito proved that the maximum number of maximum generalized 2-independent sets in a tree of order n is 2(n-3/2) if n is odd, and 2(n-2/2) +1 if n is even. Tu et al. showed that the maximum number of maximum generalized 3-independent sets in a tree of order n is 3(n/3-1)+n/3+1 if n equivalent to 0 (mod 3), and 3(n-1/3)-1+1 if n equivalent to 1 (mod 3), and 3(n-2/3)-1 if n equivalent to 2 (mod 3) and they characterized all the extremal graphs. Inspired by these two nice results, we establish four structure theorems about maximum generalized k-independent sets in a tree for a general integer k. As applications, we show that the maximum number of generalized 4-independent sets in a tree of order n(n >= 4) is {4(n-4/4)+(n/4+1)(n/8+1), n equivalent to 0 (mod4), 4(n-5/4)+n-1/4+1, n equivalent to 1 (mod 4), 4(n-6/4)+n-2/4, n equivalent to 2 mod 4), 4(n-7/4), n equivalent to 3 (mod 4) and we also characterize the structure of all extremal trees with the maximum number of maximum generalized 4-independent sets.
机构:
SUNY at Stony Brook, Stony Brook,, NY, USA, SUNY at Stony Brook, Stony Brook, NY, USASUNY at Stony Brook, Stony Brook,, NY, USA, SUNY at Stony Brook, Stony Brook, NY, USA