On the Maximum and Minimum Zagreb Indices of Trees with a Given Number of Vertices of Maximum Degree

被引:0
|
作者
Borovicanin, Bojana [1 ]
Lampert, Tatjana Aleksic [1 ]
机构
[1] Univ Kragujevac, Dept Math & Informat, Fac Sci, Kragujevac 34000, Serbia
关键词
TOPOLOGICAL INDEXES; MOLECULAR-ORBITALS; GRAPH-THEORY; BOUNDS;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For a (molecular) graph G the first Zagreb index M-1(G) is defined as the sum of the squares of the vertex degrees, and the second Zagreb index M-2(G) is equal to the sum of the products of the pairs of adjacent vertices' vertex degrees. Let J(n,k) be the class of trees with n vertices of which k vertices have the maximum degree. In this paper we determine the extremal trees of the class J(n,k), i.e., those with minimal (maximal) first Zagreb index or minimal (maximal) second Zagreb index.
引用
收藏
页码:81 / 96
页数:16
相关论文
共 50 条