Initial data identification in space dependent conservation laws and Hamilton-Jacobi equations

被引:1
|
作者
Colombo, Rinaldo M. [1 ,2 ]
Perrollaz, Vincent [3 ]
Sylla, Abraham [4 ]
机构
[1] Univ Brescia, INdAM Unit, Brescia, Italy
[2] Univ Brescia, Dept Informat Engn, Brescia, Italy
[3] Univ Orleans, Univ Tours, CNRS UMR 7013, Inst Denis Poisson, Orleans, France
[4] Univ Milano Bicocca, Dept Math & Applicat, Milan, Italy
关键词
Inverse design for hyperbolic equations; Conservation Laws; Hamilton-Jacobi equation; optimal control problem; VISCOSITY SOLUTIONS; ATTAINABLE SET; SINGULARITIES; SYSTEMS;
D O I
10.1080/03605302.2024.2348047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a Conservation Law and a Hamilton-Jacobi equation with a flux/Hamiltonian depending also on the space variable. We characterize first the attainable set of the two equations and, second, the set of initial data evolving at a prescribed time into a prescribed profile. An explicit example then shows the deep differences between the cases of x-independent and x-dependent fluxes/Hamiltonians.
引用
收藏
页码:470 / 504
页数:35
相关论文
共 50 条
  • [41] Externality and Hamilton-Jacobi equations
    Paola Loreti
    Giorgio Vergara Caffarelli
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 123 - 136
  • [42] Externality and Hamilton-Jacobi equations
    Loreti, P
    Caffarelli, GV
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (02): : 123 - 136
  • [43] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [44] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [45] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304
  • [46] On vectorial Hamilton-Jacobi equations
    Imbert, C
    Volle, M
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 493 - 506
  • [47] Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients
    Adimurthi
    Mishra, Siddhartha
    Gowda, G. D. Veerappa
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 241 (01) : 1 - 31
  • [48] The vanishing discount problem for Hamilton-Jacobi equations in the Euclidean space
    Ishii, Hitoshi
    Siconolfi, Antonio
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (06) : 525 - 560
  • [49] Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space
    Fujita, Yasuhiro
    Ishii, Hitoshi
    Loreti, Paola
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (05) : 1671 - 1700
  • [50] SBV Regularity of Systems of Conservation Laws and Hamilton–Jacobi Equations
    Bianchini S.
    Journal of Mathematical Sciences, 2014, 201 (6) : 733 - 745