Initial data identification in space dependent conservation laws and Hamilton-Jacobi equations

被引:1
|
作者
Colombo, Rinaldo M. [1 ,2 ]
Perrollaz, Vincent [3 ]
Sylla, Abraham [4 ]
机构
[1] Univ Brescia, INdAM Unit, Brescia, Italy
[2] Univ Brescia, Dept Informat Engn, Brescia, Italy
[3] Univ Orleans, Univ Tours, CNRS UMR 7013, Inst Denis Poisson, Orleans, France
[4] Univ Milano Bicocca, Dept Math & Applicat, Milan, Italy
关键词
Inverse design for hyperbolic equations; Conservation Laws; Hamilton-Jacobi equation; optimal control problem; VISCOSITY SOLUTIONS; ATTAINABLE SET; SINGULARITIES; SYSTEMS;
D O I
10.1080/03605302.2024.2348047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a Conservation Law and a Hamilton-Jacobi equation with a flux/Hamiltonian depending also on the space variable. We characterize first the attainable set of the two equations and, second, the set of initial data evolving at a prescribed time into a prescribed profile. An explicit example then shows the deep differences between the cases of x-independent and x-dependent fluxes/Hamiltonians.
引用
收藏
页码:470 / 504
页数:35
相关论文
共 50 条