Decomposing Temporal Equilibrium Strategy for Coordinated Distributed Multi-Agent Reinforcement Learning

被引:0
|
作者
Zhu, Chenyang [1 ]
Si, Wen [1 ]
Zhu, Jinyu [1 ]
Jiang, Zhihao [2 ]
机构
[1] Changzhou Univ, Sch Comp Sci & Aritificial Intelligence, Changzhou, Jiangsu, Peoples R China
[2] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
MARKOV DECISION-PROCESSES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increasing demands for system complexity and robustness have prompted the integration of temporal logic into Multi-Agent Reinforcement Learning (MARL) to address tasks with non-Markovian properties. However, incorporating non-Markovian properties introduces additional computational complexities, as agents are required to integrate historical data into their decision-making process. Also, optimizing strategies within a multi-agent environment presents significant challenges due to the exponential growth of the state space with the number of agents. In this study, we introduce an innovative hierarchical MARL framework that synthesizes temporal equilibrium strategies through parity games and subsequently encodes them as individual reward machines for MARL coordination. More specifically, we reduce the strategy synthesis problem into an emptiness problem concerning parity games with optimized states and transitions. Following this synthesis step, the temporal equilibrium strategy is decomposed into individual reward machines for decentralized MARL. Theoretical proofs are provided to verify the consistency of the Nash equilibrium between the parallel composition of decomposed strategies and the original strategy. Empirical evidence confirms the efficacy of the proposed synthesis technique, showcasing its ability to reduce state space compared to the state-of-the-art tool. Furthermore, our study highlights the superior performance of the distributed MARL paradigm over centralized approaches when deploying decomposed strategies.
引用
收藏
页码:17618 / 17627
页数:10
相关论文
共 50 条
  • [1] Learning Distributed Coordinated Policy in Catching Game with Multi-Agent Reinforcement Learning
    Liu, Xiangyu
    Tan, Ying
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [2] Multi-agent deep reinforcement learning strategy for distributed energy
    Xi, Lei
    Sun, Mengmeng
    Zhou, Huan
    Xu, Yanchun
    Wu, Junnan
    Li, Yanying
    MEASUREMENT, 2021, 185
  • [3] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [4] Parallel and distributed multi-agent reinforcement learning
    Kaya, M
    Arslan, A
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, 2001, : 437 - 441
  • [5] Coding for Distributed Multi-Agent Reinforcement Learning
    Wang, Baoqian
    Xie, Junfei
    Atanasov, Nikolay
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 10625 - 10631
  • [6] Decomposing Synthesized Strategies for Reactive Multi-agent Reinforcement Learning
    Zhu, Chenyang
    Zhu, Jinyu
    Cal, Yujie
    Wang, Fang
    THEORETICAL ASPECTS OF SOFTWARE ENGINEERING, TASE 2023, 2023, 13931 : 59 - 76
  • [7] Distributed reinforcement learning in multi-agent networks
    Kar, Soummya
    Moura, Jose M. F.
    Poor, H. Vincent
    2013 IEEE 5TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2013), 2013, : 296 - +
  • [8] Decomposing shared networks for separate cooperation with multi-agent reinforcement learning
    Liu, Weiwei
    Peng, Linpeng
    Wen, Licheng
    Yang, Jian
    Liu, Yong
    INFORMATION SCIENCES, 2023, 641
  • [9] Distributed localization for IoT with multi-agent reinforcement learning
    Jia, Jie
    Yu, Ruoying
    Du, Zhenjun
    Chen, Jian
    Wang, Qinghu
    Wang, Xingwei
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (09): : 7227 - 7240
  • [10] Distributed Coordination Guidance in Multi-Agent Reinforcement Learning
    Lau, Qiangfeng Peter
    Lee, Mong Li
    Hsu, Wynne
    2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 456 - 463