Distributed localization for IoT with multi-agent reinforcement learning

被引:6
|
作者
Jia, Jie [1 ,2 ]
Yu, Ruoying [1 ]
Du, Zhenjun [3 ]
Chen, Jian [1 ]
Wang, Qinghu [1 ,2 ]
Wang, Xingwei [1 ,2 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
[2] Minist Educ, Engn Res Ctr Secur Technol Complex Network Syst, Shenyang 110819, Peoples R China
[3] SIASUN Robot & Automat CO Ltd, Shenyang, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2022年 / 34卷 / 09期
基金
中国国家自然科学基金;
关键词
Distributed localization; Q-learning; Internet of things (IoT); Multi-agent reinforcement learning; PERIODIC-SOLUTION; WIRELESS; ALGORITHM;
D O I
10.1007/s00521-021-06855-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Localization has become one of the important techniques for Internet of Things (IoT). However, most existing localization methods need a central controller and operate on an off-line manner, which cannot satisfy the requirements of real-time IoT applications. In order to address this issue, a novel distributed localization scheme based on multi-agent reinforcement learning (MARL) is proposed. The localization problem is first reformulated as a stochastic game for maximizing the sum of the negative localization error. Each non-anchor node is then modeled as an intelligent agent, where its action space corresponds to possible locations. After that, we invoke a MARL framework on the basis of conventional Q-learning framework to learn the optimal policy, and to maximize the long-term expected reward. The novel strategy is also proposed to reduce the localization error. Extensive simulations demonstrate that the proposed localization method is superior to game theoretic-based distributed localization algorithm and virtual force-based distributed localization algorithm in terms of both localization accuracy and convergence speed, and is suitable for on-line localization scenarios.
引用
下载
收藏
页码:7227 / 7240
页数:14
相关论文
共 50 条
  • [1] Distributed localization for IoT with multi-agent reinforcement learning
    Jie Jia
    Ruoying Yu
    Zhenjun Du
    Jian Chen
    Qinghu Wang
    Xingwei Wang
    Neural Computing and Applications, 2022, 34 : 7227 - 7240
  • [2] Transactive Multi-Agent Reinforcement Learning for Distributed Energy Price Localization
    Spangher, Lucas
    BUILDSYS'21: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, 2021, : 244 - 245
  • [3] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [4] Parallel and distributed multi-agent reinforcement learning
    Kaya, M
    Arslan, A
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, 2001, : 437 - 441
  • [5] Coding for Distributed Multi-Agent Reinforcement Learning
    Wang, Baoqian
    Xie, Junfei
    Atanasov, Nikolay
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 10625 - 10631
  • [6] Distributed reinforcement learning in multi-agent networks
    Kar, Soummya
    Moura, Jose M. F.
    Poor, H. Vincent
    2013 IEEE 5TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2013), 2013, : 296 - +
  • [7] Distributed Coordination Guidance in Multi-Agent Reinforcement Learning
    Lau, Qiangfeng Peter
    Lee, Mong Li
    Hsu, Wynne
    2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 456 - 463
  • [8] Distributed reinforcement learning in multi-agent decision systems
    Giráldez, JI
    Borrajo, D
    PROGRESS IN ARTIFICIAL INTELLIGENCE-IBERAMIA 98, 1998, 1484 : 148 - 159
  • [9] Multi-Agent Deep Reinforcement Learning for Distributed Load Restoration
    Linh Vu
    Tuyen Vu
    Thanh Long Vu
    Srivastava, Anurag
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (02) : 1749 - 1760
  • [10] Distributed Inverse Constrained Reinforcement Learning for Multi-agent Systems
    Liu, Shicheng
    Zhu, Minghui
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,