Decomposing Temporal Equilibrium Strategy for Coordinated Distributed Multi-Agent Reinforcement Learning

被引:0
|
作者
Zhu, Chenyang [1 ]
Si, Wen [1 ]
Zhu, Jinyu [1 ]
Jiang, Zhihao [2 ]
机构
[1] Changzhou Univ, Sch Comp Sci & Aritificial Intelligence, Changzhou, Jiangsu, Peoples R China
[2] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
MARKOV DECISION-PROCESSES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increasing demands for system complexity and robustness have prompted the integration of temporal logic into Multi-Agent Reinforcement Learning (MARL) to address tasks with non-Markovian properties. However, incorporating non-Markovian properties introduces additional computational complexities, as agents are required to integrate historical data into their decision-making process. Also, optimizing strategies within a multi-agent environment presents significant challenges due to the exponential growth of the state space with the number of agents. In this study, we introduce an innovative hierarchical MARL framework that synthesizes temporal equilibrium strategies through parity games and subsequently encodes them as individual reward machines for MARL coordination. More specifically, we reduce the strategy synthesis problem into an emptiness problem concerning parity games with optimized states and transitions. Following this synthesis step, the temporal equilibrium strategy is decomposed into individual reward machines for decentralized MARL. Theoretical proofs are provided to verify the consistency of the Nash equilibrium between the parallel composition of decomposed strategies and the original strategy. Empirical evidence confirms the efficacy of the proposed synthesis technique, showcasing its ability to reduce state space compared to the state-of-the-art tool. Furthermore, our study highlights the superior performance of the distributed MARL paradigm over centralized approaches when deploying decomposed strategies.
引用
收藏
页码:17618 / 17627
页数:10
相关论文
共 50 条
  • [41] Spatial-Temporal Traffic Flow Control on Motorways Using Distributed Multi-Agent Reinforcement Learning
    Kusic, Kresimir
    Ivanjko, Edouard
    Vrbanic, Filip
    Greguric, Martin
    Dusparic, Ivana
    MATHEMATICS, 2021, 9 (23)
  • [42] Coordinated Slicing and Admission Control Using Multi-Agent Deep Reinforcement Learning
    Sulaiman, Muhammad
    Moayyedi, Arash
    Ahmadi, Mahdieh
    Salahuddin, Mohammad A.
    Boutaba, Raouf
    Saleh, Aladdin
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (02): : 1110 - 1124
  • [43] Distributed, Heterogeneous, Multi-Agent Social Coordination via Reinforcement Learning
    Shi, Dongqing
    Sauter, Michael Z.
    Kralik, Jerald D.
    2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2009), VOLS 1-4, 2009, : 653 - 658
  • [44] Hierarchical Reinforcement Learning with Opponent Modeling for Distributed Multi-agent Cooperation
    Liang, Zhixuan
    Cao, Jiannong
    Jiang, Shan
    Saxena, Divya
    Xu, Huafeng
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 884 - 894
  • [45] Dynamic distributed constraint optimization using multi-agent reinforcement learning
    Shokoohi, Maryam
    Afsharchi, Mohsen
    Shah-Hoseini, Hamed
    SOFT COMPUTING, 2022, 26 (08) : 3601 - 3629
  • [46] Multi-Agent Distributed Reinforcement Learning for Making Decentralized Offloading Decisions
    Tan, Jing
    Khalili, Ramin
    Karl, Holger
    Hecker, Artur
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2022), 2022, : 2098 - 2107
  • [47] Distributed Multi-agent Reinforcement Learning for Directional UAV Network Control
    He, Linsheng
    Zhao, Jiamiao
    Hu, Fei
    PROCEEDINGS OF THE 32ND INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, HPDC 2023, 2023, : 317 - 318
  • [48] Distributed Cooperative Multi-Agent Reinforcement Learning with Directed Coordination Graph
    Jing, Gangshan
    Bai, He
    George, Jemin
    Chakrabortty, Aranya
    Sharma, Piyush K.
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3273 - 3278
  • [49] Distributed interference coordination based on multi-agent deep reinforcement learning
    Liu T.
    Luo Y.
    Yang C.
    Tongxin Xuebao/Journal on Communications, 2020, 41 (07): : 38 - 48
  • [50] Cooperative Multi-Agent Systems Using Distributed Reinforcement Learning Techniques
    Zemzem, Wiem
    Tagina, Moncef
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018), 2018, 126 : 517 - 526