CO2 Capture Cost Reduction Potential of the Coal-Fired Power Plants under High Penetration of Renewable Power in China

被引:0
|
作者
He, Song [1 ,2 ]
Zheng, Yawen [1 ,3 ]
机构
[1] Guangdong Univ Technol, Sch Ecol Environm & Resources, 100 Waihuan Xi Rd, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Collaborat Innovat Inst Carbon Neutral & Green Dev, 100 Waihuan Xi Rd, Guangzhou 510006, Peoples R China
[3] Shenzhen Gas Corp Ltd, Shenzhen 518040, Peoples R China
关键词
renewable energy; CO2 capture and storage; multi-energy supply system; cost reduction potential; CARBON CAPTURE; POSTCOMBUSTION CAPTURE; THERMODYNAMIC ANALYSIS; ENERGY; CYCLE; INTEGRATION; GENERATION; SYSTEM; PILOT; MEA;
D O I
10.3390/en17092050
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With a significant share of renewable power generation integrated into the power supply, it is crucial to timely adjust the regulating peak load for coal-fired power plants equipped with CO2 capture to ensure the stable operation of the multi-energy supply system. In this paper, the effects of varying boiler loads on the techno-economic performance of the retrofitted power plant were studied. Furthermore, the potential for reducing the cost of CO2 capture was investigated, and early opportunities for demonstration were discussed. Results showed that when the boiler load decreased from 100% turbine heat acceptance condition to 50% turbine heat acceptance condition, the cost of CO2 capture increased from 37.0 $/t CO2 to 57.0 $/t CO2, cost contribution of energy penalty and extra capital investment also increased from 20.6 $/t-CO2 to 25.7 $/t-CO2, and from 16.4 $/t-CO2 to 31.3 $/t-CO2, respectively. Furthermore, by improving separation efficiency from 0.15 to 0.5, a 25% to 30% reduction in CO2 capture cost can be achieved. The cost of CO2 capture could decrease by 42.2-50.5% when the cumulative capacity reaches 250 GW under the high investment learning rate scenario. According to the distribution of coal prices and renewable energy sources in China, the early demonstration projects of multi-energy supply systems should prioritize the northern region. The results of this work can provide informative references for making roadmaps and policies for CO2 emission reduction toward carbon neutrality.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Comparison and Analysis of CO2 Capture Technology of Coal-fired Power Plant
    Wang, Chao
    Chen, ShenQian
    Ren, JianXing
    3RD INTERNATIONAL CONFERENCE ON MECHANICS, DYNAMIC SYSTEMS AND MATERIAL ENGINEERING (MDSME 2015), 2015, : 113 - 116
  • [22] The KMgAl Sorbents for CO2 Capture from Coal-fired Power Plant
    Li, Lei
    Wen, Xia
    Wang, Feng
    Zhao, Ning
    Xiao, Fukui
    Wei, Wei
    Sun, Yuhan
    SUSTAINABLE DEVELOPMENT OF NATURAL RESOURCES, PTS 1-3, 2013, 616-618 : 1523 - 1527
  • [23] A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants
    Wang, Yuan
    Zhao, Li
    Otto, Alexander
    Robinius, Martin
    Stolten, Detlef
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 650 - 665
  • [24] New Configuration of the CO2 Capture Process Using Aqueous Monoethanolamine for Coal-Fired Power Plants
    Jung, Jaeheum
    Jeong, Yeong Su
    Lee, Ung
    Lim, Youngsub
    Han, Chonghun
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (15) : 3865 - 3878
  • [25] Techno-Economic Analysis of CO2 Capture Processes from Coal-fired Power Plants
    Yun, Seokwon
    Lee, Sunghoon
    Kim, Jin-Kuk
    28TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2018, 43 : 1519 - 1520
  • [26] Capture-ready supercritical coal-fired power plants and flexible post-combustion CO2 capture
    Lucquiaud, Mathieu
    Chalmers, Hannah
    Gibbins, Jon
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 1411 - 1418
  • [27] An assessment of the potential for retrofitting existing coal-fired power plants in China
    Li, Jia
    Gibbins, Jon
    Cockerill, Tim
    Chalmers, Hannah
    Lucquiaud, Mathieu
    Liang, Xi
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1805 - 1811
  • [28] Emissions reduction potential from CO2 capture: A life-cycle assessment of a Brazilian coal-fired power plant
    Castelo Branco, David A.
    Moura, Maria Cecilia P.
    Szklo, Alexandre
    Schaeffer, Roberto
    ENERGY POLICY, 2013, 61 : 1221 - 1235
  • [29] Assessing the cost of new coal-fired power plants
    Booras, G
    Hoskins, B
    POWER, 2005, 149 (08) : 24 - 28
  • [30] Costs of CO2 capture technologies in coal fired power and hydrogen plants
    Davison, John
    Mancuso, Luca
    Ferrari, Noemi
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 7598 - 7607