Multi-agent Deep Reinforcement Learning for Countering Uncrewed Aerial Systems

被引:0
|
作者
Pierre, Jean-Elie [1 ]
Sun, Xiang [1 ]
Novick, David [2 ]
Fierro, Rafael [1 ]
机构
[1] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
Multi-agent systems; deep reinforcement learning; counter uncrewed aerial systems (C-UAS); machine learning; PURSUIT;
D O I
10.1007/978-3-031-51497-5_28
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The proliferation of small uncrewed aerial systems (UAS) poses many threats to airspace systems and critical infrastructures. In this paper, we apply deep reinforcement learning (DRL) to intercept rogue UAS in urban airspaces. We train a group of homogeneous friendly UAS, in this paper referred to as agents, to pursue and intercept a faster UAS evading capture while navigating through crowded airspace with several moving non-cooperating interacting entities (NCIEs). The problem is formulated as a multi-agent Markov Decision Process, and we develop the Proximal Policy Optimization based Advantage Actor-Critic (PPO-A2C) method to solve it, where the actor and critic networks are trained in a centralized server and the derived actor network is distributed to the agents to generate the optimal action based their observations. The simulation results show that, as compared to the traditional method, PPO-A2C fosters collaborations among agents to achieve the highest probability of capturing the evader and maintain the collision rate with other agents and NCIEs in the environment.
引用
收藏
页码:394 / 407
页数:14
相关论文
共 50 条
  • [21] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE Access, 2020, 8 : 119000 - 119009
  • [22] Action Markets in Deep Multi-Agent Reinforcement Learning
    Schmid, Kyrill
    Belzner, Lenz
    Gabor, Thomas
    Phan, Thomy
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 240 - 249
  • [23] A survey of multi-agent deep reinforcement learning with communication
    Zhu, Changxi
    Dastani, Mehdi
    Wang, Shihan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2024, 38 (01)
  • [24] Cooperative Exploration for Multi-Agent Deep Reinforcement Learning
    Liu, Iou-Jen
    Jain, Unnat
    Yeh, Raymond A.
    Schwing, Alexander G.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [25] Competitive Evolution Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Chen, Yiting
    Li, Jie
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [26] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE ACCESS, 2020, 8 : 119000 - 119009
  • [27] Multi-Agent Deep Reinforcement Learning in Vehicular OCC
    Islam, Amirul
    Musavian, Leila
    Thomos, Nikolaos
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [28] Teaching on a Budget in Multi-Agent Deep Reinforcement Learning
    Ilhan, Ercument
    Gow, Jeremy
    Perez-Liebana, Diego
    2019 IEEE CONFERENCE ON GAMES (COG), 2019,
  • [29] Research Progress of Multi-Agent Deep Reinforcement Learning
    Ding, Shi-Feiu
    Du, Weiu
    Zhang, Jianu
    Guo, Li-Liu
    Ding, Ding
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (07): : 1547 - 1567
  • [30] A deep multi-agent reinforcement learning framework for autonomous aerial navigation to grasping points on loads
    Chen, Jingyu
    Ma, Ruidong
    Oyekan, John
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2023, 167