DCL: Dipolar Confidence Learning for Source-Free Unsupervised Domain Adaptation

被引:0
|
作者
Tian, Qing [1 ,2 ,3 ]
Sun, Heyang [4 ,5 ]
Peng, Shun [6 ]
Zheng, Yuhui [7 ]
Wan, Jun [8 ]
Lei, Zhen [6 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Software, Wuxi 214000, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Wuxi Inst Technol, Wuxi 214000, Peoples R China
[3] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Software, Nanjing 210044, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
[6] Nanjing Univ Informat Sci & Technol, Sch Software, Nanjing 210044, Peoples R China
[7] Qinghai Normal Univ, Coll Comp, Xining 810016, Peoples R China
[8] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Data models; Task analysis; Predictive models; Generators; Feature extraction; Training; Source-free unsupervised domain adaptation (SFUDA); dipolar confidence learning (DCL); fuzzy mixup; rotation-based self-supervised learning;
D O I
10.1109/TCSVT.2023.3332353
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Source-free unsupervised domain adaptation (SFUDA) aims to conduct prediction on the target domain by leveraging knowledge from the well-trained source model. Due to the absence of source data in the SFUDA setting, the existing methods mainly build the target classifier by fine-tuning the source model incorporated with empirical adaptation losses. Although these methods have achieved somewhat promising results, nearly all of them typically suffer from the closed-fitting dilemma that their models are dominantly affected by these easy-to-distinguish instances than those hard-to-distinguish ones, resulting from the absence of the labeled source data. To address aforementioned issues, we propose the Dipolar Confidence Learning (DCL) for SFUDA. Specifically, we conduct positive confidence learning on the samples with standard outputs to avoid overfitting of the model to these samples. In contrast, we perform negative confidence learning for the samples with abnormal outputs to optimize the complementary label, which forces the network to pay more attention to these confusing samples. Furthermore, to achieve more generalized domain alignment, both the confidence-based fuzzy mixup and rotation-based self-supervised learning are respectively constructed to boost the representation ability of the target model. Finally, extensive experiments are conducted to demonstrate the effectiveness and performance superiority of the proposed method.
引用
收藏
页码:4342 / 4353
页数:12
相关论文
共 50 条
  • [41] Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation
    Litrico, Mattia
    Del Bue, Alessio
    Morerio, Pietro
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7640 - 7650
  • [42] Unified multi-level neighbor clustering for Source-Free Unsupervised Domain Adaptation
    Xiao, Yuzhe
    Xiao, Guangyi
    Chen, Hao
    PATTERN RECOGNITION, 2024, 153
  • [43] Enhancing and Adapting in the Clinic: Source-Free Unsupervised Domain Adaptation for Medical Image Enhancement
    Li, Heng
    Lin, Ziqin
    Qiu, Zhongxi
    Li, Zinan
    Niu, Ke
    Guo, Na
    Fu, Huazhu
    Hu, Yan
    Liu, Jiang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (04) : 1323 - 1336
  • [44] A Chebyshev Confidence Guided Source-Free Domain Adaptation Framework for Medical Image Segmentation
    Hu, Jiesi
    Yang, Yanwu
    Guo, Xutao
    Ma, Ting
    Wang, Jinghua
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (09) : 5473 - 5486
  • [45] Robust self-supervised learning for source-free domain adaptation
    Tian, Liang
    Zhou, Lihua
    Zhang, Hao
    Wang, Zhenbin
    Ye, Mao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 2405 - 2413
  • [46] SSDA: Secure Source-Free Domain Adaptation
    Ahmed, Sabbir
    Al Arafat, Abdullah
    Rizve, Mamshad Nayeem
    Hossain, Rahim
    Guo, Zhishan
    Rakin, Adnan Siraj
    Proceedings of the IEEE International Conference on Computer Vision, 2023, : 19123 - 19133
  • [47] Source-free domain adaptation for image segmentation
    Bateson, Mathilde
    Kervadec, Hoel
    Dolz, Jose
    Lombaert, Herve
    Ben Ayed, Ismail
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [48] USDAP: universal source-free domain adaptation based on prompt learning
    Shao, Xun
    Shao, Mingwen
    Chen, Sijie
    Liu, Yuanyuan
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (05)
  • [49] Source-Free Domain Adaptation for Semantic Segmentation
    Liu, Yuang
    Zhang, Wei
    Wang, Jun
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1215 - 1224
  • [50] SSDA: Secure Source-Free Domain Adaptation
    Ahmed, Sabbir
    Al Arafat, Abdullah
    Rizve, Mamshad Nayeem
    Hossain, Rahim
    Guo, Zhishan
    Rakin, Adnan Siraj
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 19123 - 19133