DCL: Dipolar Confidence Learning for Source-Free Unsupervised Domain Adaptation

被引:0
|
作者
Tian, Qing [1 ,2 ,3 ]
Sun, Heyang [4 ,5 ]
Peng, Shun [6 ]
Zheng, Yuhui [7 ]
Wan, Jun [8 ]
Lei, Zhen [6 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Software, Wuxi 214000, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Wuxi Inst Technol, Wuxi 214000, Peoples R China
[3] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Software, Nanjing 210044, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
[6] Nanjing Univ Informat Sci & Technol, Sch Software, Nanjing 210044, Peoples R China
[7] Qinghai Normal Univ, Coll Comp, Xining 810016, Peoples R China
[8] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Data models; Task analysis; Predictive models; Generators; Feature extraction; Training; Source-free unsupervised domain adaptation (SFUDA); dipolar confidence learning (DCL); fuzzy mixup; rotation-based self-supervised learning;
D O I
10.1109/TCSVT.2023.3332353
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Source-free unsupervised domain adaptation (SFUDA) aims to conduct prediction on the target domain by leveraging knowledge from the well-trained source model. Due to the absence of source data in the SFUDA setting, the existing methods mainly build the target classifier by fine-tuning the source model incorporated with empirical adaptation losses. Although these methods have achieved somewhat promising results, nearly all of them typically suffer from the closed-fitting dilemma that their models are dominantly affected by these easy-to-distinguish instances than those hard-to-distinguish ones, resulting from the absence of the labeled source data. To address aforementioned issues, we propose the Dipolar Confidence Learning (DCL) for SFUDA. Specifically, we conduct positive confidence learning on the samples with standard outputs to avoid overfitting of the model to these samples. In contrast, we perform negative confidence learning for the samples with abnormal outputs to optimize the complementary label, which forces the network to pay more attention to these confusing samples. Furthermore, to achieve more generalized domain alignment, both the confidence-based fuzzy mixup and rotation-based self-supervised learning are respectively constructed to boost the representation ability of the target model. Finally, extensive experiments are conducted to demonstrate the effectiveness and performance superiority of the proposed method.
引用
收藏
页码:4342 / 4353
页数:12
相关论文
共 50 条
  • [31] Reliable Source Approximation: Source-Free Unsupervised Domain Adaptation for Vestibular Schwannoma MRI Segmentation
    Zeng, Hongye
    Zou, Ke
    Chen, Zhihao
    Zheng, Rui
    Fu, Huazhu
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT X, 2024, 15010 : 622 - 632
  • [32] Source bias reduction for source-free domain adaptation
    Tian, Liang
    Ye, Mao
    Zhou, Lihua
    Wang, Zhenbin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 883 - 893
  • [33] Source-free domain adaptation with unrestricted source hypothesis
    He, Jiujun
    Wu, Liang
    Tao, Chaofan
    Lv, Fengmao
    Pattern Recognition, 2024, 149
  • [34] Source-free domain adaptation with unrestricted source hypothesis
    He, Jiujun
    Wu, Liang
    Tao, Chaofan
    Lv, Fengmao
    PATTERN RECOGNITION, 2024, 149
  • [35] Adversarial Source Generation for Source-Free Domain Adaptation
    Cui, Chaoran
    Meng, Fan'an
    Zhang, Chunyun
    Liu, Ziyi
    Zhu, Lei
    Gong, Shuai
    Lin, Xue
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (06) : 4887 - 4898
  • [36] Robust self-supervised learning for source-free domain adaptation
    Liang Tian
    Lihua Zhou
    Hao Zhang
    Zhenbin Wang
    Mao Ye
    Signal, Image and Video Processing, 2023, 17 : 2405 - 2413
  • [37] Global self-sustaining and local inheritance for source-free unsupervised domain adaptation
    Peng, Lin
    He, Yuhang
    Wang, Shaokun
    Song, Xiang
    Dong, Songlin
    Wei, Xing
    Gong, Yihong
    PATTERN RECOGNITION, 2024, 155
  • [38] Learning Source-Free Domain Adaptation for Infrared Small Target Detection
    Jin, Hongxu
    Chen, Baiyang
    Lu, Qianwen
    Tao, Qingchuan
    Li, Yongxiang
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 1121 - 1125
  • [39] Collaborative Learning of Diverse Experts for Source-free Universal Domain Adaptation
    Shen, Meng
    Lu, Yanzuo
    Hu, Yanxu
    Ma, Andy J.
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2054 - 2065
  • [40] Source-free video domain adaptation by learning from noisy labels
    Dasgupta, Avijit
    Jawahar, C. V.
    Alahari, Karteek
    PATTERN RECOGNITION, 2025, 161