Leveraging trajectory simplification for efficient map-matching on road network

被引:0
|
作者
Ishiguro, Tsukasa [1 ]
Sasai, Tateyuki [1 ]
Fukushima, Shintaro [1 ]
Kato, Sei [1 ]
机构
[1] Toyota Motor Co Ltd, Tokyo, Japan
关键词
Trajectory; Map-Matching; Global Positioning System; Trajectory Simplification; Data Compression; ALGORITHMS;
D O I
10.1109/MDM61037.2024.00056
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trajectory data is central to many applications with moving objects due to the popularity of Global Positioning System (GPS) devices. Raw trajectory data is usually of large volume, which incurs high storage and processing costs and require heavy computational cost for post process. A promising approach to tackling this issue is to map raw trajectory data to a sequence of discrelized road links (symbols) on a road network, which is called map-matching. However, existing map-matching algorithms also require heavy computational cost. In this paper, we propose a new offline trajectory simplification metric suitable for map-matching on road network. We present a polynomial-time algorithm for quality optimal closest road preserving simplification. Additionally, we conduct experimental evaluation with real-life trajectory datasets and the results demonstrate the superior performance of our methods.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 50 条
  • [31] GIS-based Map-matching: Development and Demonstration of a Postprocessing Map-matching Algorithm for Transportation Research
    Dalumpines, Ron
    Scott, Darren M.
    ADVANCING GEOINFORMATION SCIENCE FOR A CHANGING WORLD, 2011, 1 : 101 - 120
  • [32] High-Accuracy Off-Line Map-Matching of Trajectory Network Division Based on Weight Adaptation HMM
    Xie, Yan
    Zhou, Kai
    Miao, Fang
    Zhang, Qian
    IEEE ACCESS, 2020, 8 : 7256 - 7266
  • [33] Map-Matching Using Shortest Paths
    Chambers, Erin
    Fasy, Brittany Terese
    Wang, Yusu
    Wenk, Carola
    ACM TRANSACTIONS ON SPATIAL ALGORITHMS AND SYSTEMS, 2020, 6 (01)
  • [34] Map-Matching Using Shortest Paths
    Chambers, Erin
    Fasy, Brittany Terese
    Wang, Yusu
    Wenk, Carola
    PROCEEDINGS OF THE 3RD INTERNATIONAL WORKSHOP ON INTERACTIVE AND SPATIAL COMPUTING (IWISC 18), 2018, : 44 - 51
  • [35] A dynamic map-matching method for adaptability
    Hong Wei
    Tian Yantao
    Xu Bin
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 6, 2007, : 66 - +
  • [36] iMatching: An interactive map-matching system
    Ding, Ye
    Zhou, Xibo
    Liao, Qing
    Tan, Haoyu
    Luo, Qiong
    Ni, Lionel M.
    NEUROCOMPUTING, 2021, 444 : 126 - 135
  • [37] A Map-matching Algorithm Based on Graphics
    Yang Qiangrong
    Wang Meiling
    Yang Hua
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 5046 - 5051
  • [38] iMatching: An interactive map-matching system
    Ding, Ye
    Zhou, Xibo
    Liao, Qing
    Tan, Haoyu
    Luo, Qiong
    Ni, Lionel M.
    Neurocomputing, 2021, 444 : 126 - 135
  • [39] Map-matching Algorithm for Large Databases
    Romon, Sebastien
    Bressaud, Xavier
    Lassarre, Sylvain
    Saint Pierre, Guillaume
    Khoudour, Louahdi
    JOURNAL OF NAVIGATION, 2015, 68 (05): : 971 - 988
  • [40] Intelligent map-matching algorithm based on map information
    Li L.-L.
    Chen J.-B.
    Yang L.-M.
    Yin J.-Y.
    Hu M.-K.
    Gao H.-B.
    Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2016, 24 (02): : 170 - 174