TBK1 is ubiquitinated by TRIM5 a to assemble mitophagy machinery

被引:2
|
作者
Saha, Bhaskar [1 ,5 ]
Olsvik, Hallvard [2 ]
Williams, Geneva L. [3 ]
Oh, Seeun [1 ]
Evjen, Gry [2 ]
Sjottem, Eva [2 ]
Mandell, Michael A. [1 ,4 ]
机构
[1] Univ New Mexico, Dept Mol Genet & Microbiol, Hlth Sci Ctr, Albuquerque, NM 87131 USA
[2] Arctic Univ Norway, Dept Med Biol, Autophagy Res Grp, Univ Tromso, Tromso, Norway
[3] Univ New Mexico, Hlth Sci Ctr, Biomed Sci Grad Program, Albuquerque, NM 87131 USA
[4] Univ New Mexico, Autophagy Inflammat & Metab Ctr Biomed Res Excelle, Hlth Sci Ctr, Albuquerque, NM 87131 USA
[5] Manipal Acad Higher Educ, Manipal Sch Life Sci, Manipal 576104, Karnataka, India
来源
CELL REPORTS | 2024年 / 43卷 / 06期
基金
美国国家卫生研究院;
关键词
AUTOPHAGY RECEPTOR; PARKIN; ACTIVATION; PROMOTES; OPTINEURIN; P62/SQSTM1; BINDING; GENE; PHOSPHORYLATION; TRANSCRIPTION;
D O I
10.1016/j.celrep.2024.114294
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63 -linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5a and is required for TBK1 to interact with and activate a set of ubiquitin-binding autophagy adaptors including NDP52, p62/SQSTM1, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5a to engage with TBK1 following mitochondrial damage. TRIM5a's ubiquitin ligase activity is required for the accumulation of active TBK1 on damaged mitochondria in Parkin -dependent and Parkin -independent mitophagy pathways. Our data support a model in which TRIM5a provides a mitochondria -localized, ubiquitin-based, self -amplifying assembly platform for TBK1 and mitophagy adaptors that is ultimately necessary for the recruitment of the core autophagy machinery.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] TRIM27 Promotes Endothelial Progenitor Cell Apoptosis in Patients with In-Stent Restenosis by Ubiquitinating TBK1
    Liu, Bo
    Wang, Huai
    Xie, Wenhao
    Gong, Ting
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2024, 196 (11) : 7792 - 7804
  • [42] Structural insight into HIV-1 capsid recognition by rhesus TRIM5α
    Yang, Haitao
    Ji, Xiaoyun
    Zhao, Gongpu
    Ning, Jiying
    Zhao, Qi
    Aiken, Christopher
    Gronenborn, Angela M.
    Zhang, Peijun
    Xiong, Yong
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (45) : 18372 - 18377
  • [43] Cyclophilin A protects HIV-1 from restriction by human TRIM5α
    Kim, Kyusik
    Dauphin, Ann
    Komurlu, Sevnur
    McCauley, Sean M.
    Yurkovetskiy, Leonid
    Carbone, Claudia
    Diehl, William E.
    Strambio-De-Castillia, Caterina
    Campbell, Edward M.
    Luban, Jeremy
    NATURE MICROBIOLOGY, 2019, 4 (12) : 2044 - +
  • [44] Adaptation of HIV-1 to cells expressing rhesus monkey TRIM5α
    Pacheco, Beatriz
    Finzi, Andres
    Stremlau, Matthew
    Sodroski, Joseph
    VIROLOGY, 2010, 408 (02) : 204 - 212
  • [45] Silencing of tripartite motif protein (TRIM) 5α mediated anti-HIV-1 activity by truncated mutant of TRIM5α
    Maegawa, Hikoichiro
    Nakayama, Emi E.
    Kuroishi, Ayumu
    Shioda, Tatsuo
    JOURNAL OF VIROLOGICAL METHODS, 2008, 151 (02) : 249 - 256
  • [46] AMPK activation induces mitophagy and promotes mitochondrial fission while activating TBK1 in a PINK1-Parkin independent manner
    Seabright, Alex P.
    Fine, Nicholas H. F.
    Barlow, Jonathan P.
    Lord, Samuel O.
    Musa, Ibrahim
    Gray, Alexander
    Bryant, Jack A.
    Banzhaf, Manuel
    Lavery, Gareth G.
    Hardie, D. Grahame
    Hodson, David J.
    Philp, Andrew
    Lai, Yu-Chiang
    FASEB JOURNAL, 2020, 34 (05): : 6284 - 6301
  • [47] TRIM5α and TRIM22 Are Differentially Regulated According to HIV-1 Infection Phase and Compartment
    Singh, Ravesh
    Patel, Vinod
    Mureithi, Marianne W.
    Naranbhai, Vivek
    Ramsuran, Duran
    Tulsi, Sahil
    Hiramen, Keshni
    Werner, Lise
    Mlisana, Koleka
    Altfeld, Marcus
    Luban, Jeremy
    Kasprowicz, Victoria
    Dheda, Keertan
    Karim, Salim S. Abdool
    Ndung'u, Thumbi
    JOURNAL OF VIROLOGY, 2014, 88 (08) : 4291 - 4303
  • [48] Cyclophilin A, TRIM5, and resistance to human immunodeficiency virus type 1 infection
    Luban, Jeremy
    JOURNAL OF VIROLOGY, 2007, 81 (03) : 1054 - 1061
  • [49] The effect of Trim5 polymorphisms on the clinical course of HIV-1 infection
    Van Manen, Danielle
    Rits, Maarten A. N.
    Beugeling, Corrine
    Van Dort, Karel
    Schuitemaker, Hanneke
    Kootstra, Neeltje A.
    PLOS PATHOGENS, 2008, 4 (02)
  • [50] Immunoproteasome activation enables human TRIM5α restriction of HIV-1
    Jimenez-Guardeno, Jose M.
    Apolonia, Luis
    Betancor, Gilberto
    Malim, Michael H.
    NATURE MICROBIOLOGY, 2019, 4 (06) : 933 - 940