Unsupervised EEG-Based Seizure Anomaly Detection with Denoising Diffusion Probabilistic Models

被引:4
|
作者
Wang, Jiale [1 ]
Sun, Mengxue [1 ]
Huang, Wenhui [1 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Seizure detection; denoising diffusion probabilistic models; anomaly detection; unsupervised learning; vector-quantized representations; PHYSICS;
D O I
10.1142/S0129065724500473
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While many seizure detection methods have demonstrated great accuracy, their training necessitates a substantial volume of labeled data. To address this issue, we propose a novel method for unsupervised seizure anomaly detection called SAnoDDPM, which uses denoising diffusion probabilistic models (DDPM). We designed a novel pipeline that uses a variable lower bound on Markov chains to identify potential values that are unlikely to occur in anomalous data. The model is first trained on normal data, then anomalous data is input to the trained model. The model resamples the anomalous data and converts it to normal data. Finally, the presence of seizures can be determined by comparing the before and after data. Moreover, the input 2D spectrograms are encoded into vector-quantized representations, which enables powerful and efficient DDPM while maintaining its quality. Experimental comparisons on the publicly available datasets, CHB-MIT and TUH, show that our method delivers better results, significantly reduces inference time, and is suitable for deployment in a clinical environments. As far as we are aware, this is the first DDPM-based method for seizure anomaly detection. This novel approach significantly contributes to the progression of seizure detection algorithms, thereby augmenting their practicality in clinical settings.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Unsupervised anomaly detection for Nuclear Power Plants based on Denoising Diffusion Probabilistic Models
    Liu, Shiqiao
    Zhu, Zifei
    Zhao, Xinwen
    Wang, Yangguang
    Sun, Xiang
    Yu, Lei
    PROGRESS IN NUCLEAR ENERGY, 2025, 178
  • [2] Radio Anomaly Detection Based on Improved Denoising Diffusion Probabilistic Models
    Zeng, Junjie
    Liu, Xiangli
    Li, Zan
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (08) : 1979 - 1983
  • [3] EEG-based seizure detection
    Baumgartner, C.
    EUROPEAN JOURNAL OF NEUROLOGY, 2017, 24 : 748 - 748
  • [4] DiffTAD: Denoising diffusion probabilistic models for vehicle trajectory anomaly detection
    Li, Chaoneng
    Feng, Guanwen
    Li, Yunan
    Liu, Ruyi
    Miao, Qiguang
    Chang, Liang
    KNOWLEDGE-BASED SYSTEMS, 2024, 286
  • [5] Classifier models and architectures for EEG-based neonatal seizure detection
    Greene, B. R.
    Marnane, W. P.
    Lightbody, G.
    Reilly, R. B.
    Boylan, G. B.
    PHYSIOLOGICAL MEASUREMENT, 2008, 29 (10) : 1157 - 1178
  • [6] Unsupervised Anomaly Detection in Tongue Diagnosis with Semantic Guided Denoising Diffusion Models
    Huang, Hongbo
    Yan, Xiaoxu
    Xu, Longfei
    Zheng, Yaolin
    Huang, Linkai
    ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT I, ICIC 2024, 2024, 14881 : 453 - 465
  • [7] AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise
    Wyatt, Julian
    Leach, Adam
    Schmon, Sebastian M.
    Willcocks, Chris G.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 649 - 655
  • [8] Letter to the Editor: EEG-based seizure detection
    Reus, E. E. M.
    Visser, G. H.
    Cox, F. M. E.
    EPILEPSY & BEHAVIOR, 2024, 151
  • [9] EEG-based Absence Seizure Detection Methods
    Liang, Sheng-Fu
    Chang, Wan-Lin
    Chiueh, Herming
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [10] Unsupervised Surface Anomaly Detection with Diffusion Probabilistic Model
    Zhang, Xinyi
    Li, Naiqi
    Li, Jiawei
    Dai, Tao
    Jiang, Yong
    Xia, Shu-Tao
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 6759 - 6768