Unsupervised Anomaly Detection in Tongue Diagnosis with Semantic Guided Denoising Diffusion Models

被引:0
|
作者
Huang, Hongbo [1 ]
Yan, Xiaoxu [1 ]
Xu, Longfei [1 ]
Zheng, Yaolin [1 ]
Huang, Linkai [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Diffusion models; Anomaly detection; Tongue diagnosis;
D O I
10.1007/978-981-97-5689-6_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tongue diagnosis is one of the core diagnostic methods in Traditional Chinese Medicine (TCM), primarily involving the visual inspection of tongue images to assess a patient's health status. However, the subjectivity and environmental differences in tongue diagnosis may lead to potential errors and limitations. In this paper, we introduce an unsupervised tongue coating anomaly detection model based on diffusion models, aiming to address the limitations of traditional supervised learning and existing anomaly detection models. Our approach combines the semantic classification ability of the cross-attention module within the diffusion model with score-based conditional guidance to achieve high-quality image reconstruction and precise identification of discriminative regions. Experimental results have demonstrated that our anomaly detection model exhibits state-of-the-art performance, surpassing the accuracy of existing models.
引用
收藏
页码:453 / 465
页数:13
相关论文
共 50 条
  • [1] Unsupervised EEG-Based Seizure Anomaly Detection with Denoising Diffusion Probabilistic Models
    Wang, Jiale
    Sun, Mengxue
    Huang, Wenhui
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2024, 34 (09)
  • [2] Unsupervised anomaly detection for Nuclear Power Plants based on Denoising Diffusion Probabilistic Models
    Liu, Shiqiao
    Zhu, Zifei
    Zhao, Xinwen
    Wang, Yangguang
    Sun, Xiang
    Yu, Lei
    PROGRESS IN NUCLEAR ENERGY, 2025, 178
  • [3] Unsupervised industrial anomaly detection with diffusion models
    Xu, Haohao
    Xu, Shuchang
    Yang, Wenzhen
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 97
  • [4] EXPLORING DIFFUSION MODELS FOR UNSUPERVISED VIDEO ANOMALY DETECTION
    Tur, Anil Osman
    Dall'Asen, Nicola
    Beyan, Cigdem
    Ricci, Elisa
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2540 - 2544
  • [5] Single-Step Sampling Approach for Unsupervised Anomaly Detection of Brain MRI Using Denoising Diffusion Models
    Damudi, Mohammed Z.
    Kini, Anita S.
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2024, 2024 (01)
  • [6] Flow-Guided Diffusion Autoencoder for Unsupervised Video Anomaly Detection
    Zhu, Aoni
    Wang, Wenjun
    Yan, Cheng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VI, 2024, 14430 : 183 - 194
  • [7] Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models
    Pinaya, Walter H. L.
    Graham, Mark S.
    Gray, Robert
    da Costa, Pedro F.
    Tudosiu, Petru-Daniel
    Wright, Paul
    Mah, Yee H.
    MacKinnon, Andrew D.
    Teo, James T.
    Jager, Rolf
    Werring, David
    Rees, Geraint
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 705 - 714
  • [8] Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound
    Mykula, Hanna
    Gasser, Lisa
    Lobmaier, Silvia
    Schnabel, Julia A.
    Zimmer, Veronika
    Bercea, Cosmin I.
    SIMPLIFYING MEDICAL ULTRASOUND, ASMUS 2024, 2025, 15186 : 220 - 230
  • [9] Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI
    Behrendt, Finn
    Bhattacharya, Debayan
    Krueger, Julia
    Opfer, Roland
    Schlaefer, Alexander
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1019 - 1032
  • [10] Unsupervised Detection of Fetal Brain Anomalies Using Denoising Diffusion Models
    Olsen, Markus Ditlev Sjogren
    Ambsdorf, Jakob
    Lin, Manxi
    Taksoe-Vester, Caroline
    Svendsen, Morten Bo Sondergaard
    Christensen, Anders Nymark
    Nielsen, Mads
    Tolsgaard, Martin Gronnebaek
    Feragen, Aasa
    Pegios, Paraskevas
    SIMPLIFYING MEDICAL ULTRASOUND, ASMUS 2024, 2025, 15186 : 209 - 219