Influencing factors and the establishment of a basin ecological compensation mechanism from the perspective of water conservation: A case study of the upper Yangtze River in China

被引:3
|
作者
Guan, Dongjie [1 ]
Chen, Shi [1 ]
Zhang, Yuxiang [1 ,2 ,3 ]
Liu, Zhifeng [3 ,4 ,5 ]
Peng, Guochuan [2 ,6 ]
Zhou, Lilei [1 ,2 ]
机构
[1] Chongqing Jiaotong Univ, Sch Smart City, 66 Xuefu Rd, Chongqing 400074, Peoples R China
[2] Chongqing Acad Social Sci, Res Ctr Ecol Secur & Green Dev, Chongqing 400020, Peoples R China
[3] China Geol Survey, Appl Geol Res Ctr, Chengdu 610036, Peoples R China
[4] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol E, Beijing 100875, Peoples R China
[5] Beijing Normal Univ, Fac Geog Sci, Sch Nat Resources, Beijing 100875, Peoples R China
[6] Chongqing Acad Social Sci, Inst Ecol & Environm Resources, Chongqing 400020, Peoples R China
基金
中国国家自然科学基金;
关键词
Ecological compensation threshold; Land use conversion; Water conservation; Optimal parameters-based geographical detec; tor; Upper Yangtze River basin; WILLINGNESS-TO-PAY; SUSTAINABLE DEVELOPMENT;
D O I
10.1016/j.jclepro.2024.142332
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Under the dual impacts of global environmental degradation and human activities, ecosystem service functions have steadily declined. Ecological compensation has emerged as an important direct and efficient motivator for countries to implement ecosystem protection and restoration. At present, few studies have considered ways in which to establish ecological compensation mechanisms or have analyze the related influencing factors. The ecological compensation threshold is in the conceptual analysis stage; thus, quantitative simulation studies are lacking. In this study, the relationship between water conservation and ecological compensation was analyzed. Scenario simulation and the minimum data method were combined to establish an ecological compensation mechanism for the upper Yangtze River (UYR) basin, and the ecological compensation thresholds were quantitatively assessed. Finally, the factors influencing ecological compensation and the interactions among the factors were analyzed using an optimal parameters-based geographical detector. The results showed that (1) the different land use scenarios for the UYR resulted in notable water conservation differences, with greater differences under the fallow-to-forest scenario than under the fallow-to-grass scenario and existing scenario. (2) Furthermore, 27 subbasins were suitable for the implementation of the fallow-to-forest scenario, with an average ecological compensation threshold of 46.48 yuan/m3 and an average new water conservation amount of 22.02 x 108 m3; and 21 subbasins were suitable for the implementation of the fallow-to-grass scenario, with an average ecological compensation threshold of 107.87 yuan/m3 and an average new water conservation amount of 3.72 x 108 m3. (3) The drivers with the highest and lowest impacts on the ecological compensation thresholds were the grain yield and NDVI, respectively, while their impacts on ecological compensation were significantly enhanced by interactions among the influencing factors. In this study, the differences in ecological compensation standards were compared at the basin scale and administrative scale in different regions worldwide. Moreover, the need to establish a basin-scale ecological compensation mechanism as an effective reference for promoting the implementation and development of ecological compensation policies was explored.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Study on the influencing factors and profitability of horizontal ecological compensation mechanism in Yellow River Basin of China
    Yiwen Liu
    Liang Yuan
    Environmental Science and Pollution Research, 2023, 30 : 87353 - 87367
  • [2] Study on the influencing factors and profitability of horizontal ecological compensation mechanism in Yellow River Basin of China
    Liu, Yiwen
    Yuan, Liang
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (37) : 87353 - 87367
  • [3] Ecological Compensation Mechanism in Water Conservation Area: A Case Study of Dongjiang River
    Kong Fanbin
    Li Zhimeng
    ECONOMIC AND SOCIAL CHANGES-FACTS TRENDS FORECAST, 2015, 39 (03) : 179 - 190
  • [4] Research on Water Ecological Resilience Measurement and Influencing Factors: A Case Study of the Yangtze River Economic Belt, China
    Yang, Li
    Xu, Yue
    Zhu, Junqi
    Sun, Keyu
    SUSTAINABILITY, 2024, 16 (16)
  • [5] A Framework for Ecological Compensation Assessment: A Case Study in the Upper Hun River Basin, Northeast China
    Jiang, Xin
    Liu, Yuyu
    Zhao, Ranhang
    SUSTAINABILITY, 2019, 11 (04)
  • [6] How to measure the ecological compensation threshold in the upper Yangtze River basin, China? An approach for coupling InVEST and grey water footprint
    Guan, Dongjie
    Wu, Lei
    Cheng, Lidan
    Zhang, Yuxiang
    Zhou, Lilei
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [7] Spatiotemporal Heterogeneity of Water Conservation Function and Its Driving Factors in the Upper Yangtze River Basin
    Liu, Chengjian
    Zou, Lei
    Xia, Jun
    Chen, Xinchi
    Zuo, Lingfeng
    Yu, Jiarui
    REMOTE SENSING, 2023, 15 (21)
  • [8] The legal mechanism of Yangtze river's water resources ecological compensation
    Jiang, Lingzhou
    DISASTER ADVANCES, 2013, 6 : 16 - 23
  • [9] Ecological conservation redline delineation in flood detention areas: A case study in Anxiang County, Yangtze River Basin, China
    Zhang, Fan
    Xie, Chenxin
    Liu, Hao
    Zhou, Tingting
    Shan, Baoying
    Chen, Jingqiu
    JOURNAL OF CLEANER PRODUCTION, 2024, 462
  • [10] Patterns and drivers of carbon stock change in ecological restoration regions: A case study of upper Yangtze River Basin, China
    Quan, Yanying
    Hutjes, Ronald W. A.
    Biemans, Hester
    Zhang, Fusuo
    Chen, Xinping
    Chen, Xuanjing
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 348