A Methodology for Shielding-Gas Selection in Wire Arc Additive Manufacturing with Stainless Steel

被引:0
|
作者
Teixeira, Felipe Ribeiro [1 ]
Jorge, Vinicius Lemes [1 ]
Scotti, Fernando Matos [2 ]
Siewert, Erwan [2 ]
Scotti, Americo [1 ,3 ]
机构
[1] Univ Fed Uberlandia, Ctr Res & Dev Welding Proc, BR-38400901 Uberlandia, Brazil
[2] Linde GmbH, Linde Technol, Dept Arc Technol, D-85716 Munich, Germany
[3] Univ West, Dept Engn Sci, S-46186 Trollhattan, Sweden
关键词
arc-based AM; shielding gas; thin wall; austenitic stainless steel; metal transfer index; delta-ferrite; MECHANICAL-PROPERTIES; FERRITE CONTENT; METAL TRANSFER; MICROSTRUCTURE; GMAW; BEHAVIOR; ARGON;
D O I
10.3390/ma17133328
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The main objective of this work was to propose and evaluate a methodology for shielding-gas selection in additive manufacturing assisted by wire arc additive manufacturing (WAAM) with an austenitic stainless steel as feedstock. To validate the proposed methodology, the impact of multi-component gases was valued using three different Ar-based blends recommended as shielding gas for GMA (gas metal arc) of the target material, using CMT (cold metal transfer) as the process version. This assessment considered features that potentially affect the building of the case study of thin walls, such as metal transfer regularity, deposition time, and geometrical and metallurgical characteristics. Different settings of wire-feed speeds were conceived to maintain a similar mean current (first constraint for comparison's sake) among the three gas blends. This approach implied different mean wire-feed speeds and simultaneously forced a change in the deposition speed to maintain the same amount of material deposited per unit of length (second comparison constraint). The composition of the gases affects the operational performance of the shielding gases. It was concluded that by following this methodology, shielding-gas selection decision-making is possible based on the perceived characteristics of the different commercial blends.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Microstructure and hot corrosion performance of stainless steel 347 produced by wire arc additive manufacturing
    Kannan, A. Rajesh
    Rajkumar, V.
    Prasad, C. Durga
    Shanmugam, N. Siva
    Yoon, Jonghun
    VACUUM, 2023, 210
  • [22] Microstructure and Mechanical Properties of AISI 420 Stainless Steel Produced by Wire Arc Additive Manufacturing
    Lunde, Jonas
    Kazemipour, Mostafa
    Salahi, Salar
    Nasiri, Ali
    TMS 2020 149TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2020, : 413 - 424
  • [23] Mechanical properties of 316L stainless steel fabricated by wire and arc additive manufacturing
    Zhao Y.
    Fan R.
    Liu Y.
    Wang Z.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2023, 44 (08): : 207 - 216
  • [24] Study on properties of 304 wire arc additive manufacturing stainless steel TIG welded joints
    Chen, Yunhao
    Zhao, Xiaohui
    Yang, Bin
    Liu, Yu
    Liang, Yongchang
    Li, Ziwei
    Chen, Chao
    MATERIALS LETTERS, 2024, 361
  • [25] Wire and arc additive manufacturing: a comparison between CMT and TopTIG processes applied to stainless steel
    N. Rodriguez
    L. Vázquez
    I. Huarte
    E. Arruti
    I. Tabernero
    P. Alvarez
    Welding in the World, 2018, 62 : 1083 - 1096
  • [26] Multi-material stainless steel fabrication using plasma wire arc additive manufacturing
    Segovia-Guerrero, Luis
    Balades, Nuria
    Attard, Bonnie
    De Nicolas, Maria
    Scotti, Americo
    Zammit, Ann
    Sales, David L.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 3996 - 4002
  • [27] Experimental and Numerical Investigation of CMT Wire and Arc Additive Manufacturing of 2205 Duplex Stainless Steel
    Yuan, Yuheng
    Li, Ruifeng
    Bi, Xiaolin
    Gu, Jiayang
    Jiao, Chen
    COATINGS, 2022, 12 (12)
  • [28] Fabricating Pyramidal Lattice Structures of 304 L Stainless Steel by Wire Arc Additive Manufacturing
    Zhang, Haorui
    Huang, Junjin
    Liu, Changmeng
    Ma, Yongsheng
    Han, Yafeng
    Xu, Tianqiu
    Lu, Jiping
    Fang, Hongli
    MATERIALS, 2020, 13 (16)
  • [29] Wire and arc additive manufacturing: a comparison between CMT and TopTIG processes applied to stainless steel
    Rodriguez, N.
    Vazquez, L.
    Huarte, I
    Arruti, I
    Tabernero, I
    Alvarez, P.
    WELDING IN THE WORLD, 2018, 62 (05) : 1083 - 1096
  • [30] High-power wire arc additive manufacturing of stainless steel with active heat management
    Long, Jinwei
    Wang, Meng
    Zhao, Wenyong
    Zhang, Xujing
    Wei, Yanhong
    Ou, Wenmin
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2022, 27 (04) : 256 - 264