An accelerated iterative technique for solving mixed Fredholm-Volterra integral equations

被引:0
|
作者
Attia, A. G. [1 ,3 ]
El-kalla, I. L. [3 ]
Elsaid, A. [2 ,3 ]
Abd El-Monem, R. A. [3 ]
机构
[1] Higher Future Inst Engn & Technol, Dept Math & Basic Sci, Talkha, Egypt
[2] Egypt Japan Univ Sci & Technol E JUST, Inst Basic & Appl Sci, Dept Math, Alexandria, Egypt
[3] Mansoura Univ, Fac Engn, Dept Phys & Engn Math, Mansoura, Egypt
关键词
Mixed Fredholm-Volterra integral equations; Multi-grid iterative technique; Accelerated numerical treatment; Convergence analysis; FRACTIONAL WAVE-EQUATION; BERNSTEIN POLYNOMIALS; APPROXIMATE SOLUTION; NUMERICAL-SOLUTION; CONVERGENCE; SPREAD;
D O I
10.1016/j.asej.2024.102755
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we propose an accelerated numerical technique for solving mixed Fredholm-Volterra integral equations (MFVIEs). The MFVIE is solved using the two-grid iterative technique, which uses a small system of equations to reach higher accuracy. The convergence analysis showed that using this technique reduces computational costs by 85% compared with the direct method. We introduce an algorithm to implement this method and numerical simulations are presented to verify the accuracy rate of the theoretical analysis.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Expansion Method for Solving Fuzzy Fredholm-Volterra Integral Equations
    Khezerloo, S.
    Allahviranloo, T.
    Ghasemi, S. Haji
    Salahshour, S.
    Khezerloo, M.
    Kiasary, M. Khorasan
    [J]. INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: APPLICATIONS, PT II, 2010, 81 : 501 - +
  • [2] An iterative numerical method for Fredholm-Volterra integral equations of the second kind
    Micula, Sanda
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 935 - 942
  • [3] Modified HAM for solving linear system of Fredholm-Volterra Integral Equations
    Eshkuvatov, Z. K.
    Ismail, Sh
    Mamatova, H. X.
    Viscarra, D. S.
    Aloev, R. D.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 87 - 103
  • [4] VARIOUS WAVELET METHODS FOR SOLVING FRACTIONAL FREDHOLM-VOLTERRA INTEGRAL EQUATIONS
    Shi, Peng-Peng
    Li, Xiu
    Li, Xing
    [J]. INTEGRAL EQUATIONS, BOUNDARY VALUE PROBLEMS AND RELATED PROBLEMS: DEDICATED TO PROFESSOR CHIEN-KE LU ON THE OCCASION OF HIS 90TH BIRTHDAY, 2013, : 275 - 285
  • [5] On nonlinear Fredholm-Volterra integral equations with hysteresis
    Darwish, MA
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (02) : 479 - 484
  • [6] MIXED TYPE OF FREDHOLM-VOLTERRA INTEGRAL EQUATION
    Abdou, M. A.
    Abd Al-Kader, G. M.
    [J]. MATEMATICHE, 2005, 60 (01): : 41 - 58
  • [7] On a Fredholm-Volterra integral equation
    Filip, Alexandru-Darius
    Rus, Ioan A.
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (03): : 567 - 573
  • [8] A Computational Technique for Solving Three-Dimensional Mixed Volterra-Fredholm Integral Equations
    Mahdy, Amr M. S.
    Nagdy, Abbas S.
    Hashem, Khaled M.
    Mohamed, Doaa Sh.
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (02)
  • [9] On Some Iterative Numerical Methods for Mixed Volterra-Fredholm Integral Equations
    Micula, Sanda
    [J]. SYMMETRY-BASEL, 2019, 11 (10):
  • [10] Numerical expansion methods for solving Fredholm-Volterra type linear integral equations by interpolation and quadrature rules
    Yusufoglu, Elcin
    Erbas, Baris
    [J]. KYBERNETES, 2008, 37 (06) : 768 - 785