Expansion Method for Solving Fuzzy Fredholm-Volterra Integral Equations

被引:0
|
作者
Khezerloo, S. [1 ]
Allahviranloo, T. [2 ]
Ghasemi, S. Haji [2 ]
Salahshour, S. [2 ]
Khezerloo, M. [2 ]
Kiasary, M. Khorasan [2 ]
机构
[1] Islamic Azad Univ, Karaj Branch, Dept Math, Karaj, Iran
[2] Islamic Azad Univ, Sci & Res Branch, Dept Math, Tehran, Iran
关键词
Expansion method; Fuzzy Fredholm-Volterra Integral Equations; Linear fuzzy system; Fuzzy number; LINEAR-EQUATIONS; DECOMPOSITION METHOD; SYSTEM; EXISTENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the fuzzy Fredholm-Volterra integral equation is solved, where expansion method is applied to approximate the solution of an unknown function in the fuzzy Fredholm-Volterra integral equation and convert this equation to a system of fuzzy linear equations. Then we propose a method to solve the fuzzy linear system such that its solution is always fuzzy vector. The method is illustrated by solving several examples.
引用
收藏
页码:501 / +
页数:3
相关论文
共 50 条
  • [1] The use of fuzzy expansion method for solving fuzzy linear Volterra-Fredholm integral equations
    Behzadi, Sh. S.
    Allahviranloo, T.
    Abbasbandy, S.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (04) : 1817 - 1822
  • [2] An accelerated iterative technique for solving mixed Fredholm-Volterra integral equations
    Attia, A. G.
    El-kalla, I. L.
    Elsaid, A.
    Abd El-Monem, R. A.
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (06)
  • [3] Modified HAM for solving linear system of Fredholm-Volterra Integral Equations
    Eshkuvatov, Z. K.
    Ismail, Sh
    Mamatova, H. X.
    Viscarra, D. S.
    Aloev, R. D.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 87 - 103
  • [4] VARIOUS WAVELET METHODS FOR SOLVING FRACTIONAL FREDHOLM-VOLTERRA INTEGRAL EQUATIONS
    Shi, Peng-Peng
    Li, Xiu
    Li, Xing
    [J]. INTEGRAL EQUATIONS, BOUNDARY VALUE PROBLEMS AND RELATED PROBLEMS: DEDICATED TO PROFESSOR CHIEN-KE LU ON THE OCCASION OF HIS 90TH BIRTHDAY, 2013, : 275 - 285
  • [5] On nonlinear Fredholm-Volterra integral equations with hysteresis
    Darwish, MA
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (02) : 479 - 484
  • [6] Numerical expansion methods for solving Fredholm-Volterra type linear integral equations by interpolation and quadrature rules
    Yusufoglu, Elcin
    Erbas, Baris
    [J]. KYBERNETES, 2008, 37 (06) : 768 - 785
  • [7] Modified method for determining an approximate solution of the Fredholm-Volterra integral equations by Taylor's expansion
    Li, Xian-Fang
    Fang, Min
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2006, 83 (8-9) : 637 - 649
  • [8] An iterative numerical method for Fredholm-Volterra integral equations of the second kind
    Micula, Sanda
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 935 - 942
  • [9] Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations
    Abu Arqub, Omar
    [J]. NEURAL COMPUTING & APPLICATIONS, 2017, 28 (07): : 1591 - 1610
  • [10] On a Fredholm-Volterra integral equation
    Filip, Alexandru-Darius
    Rus, Ioan A.
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (03): : 567 - 573