On Some Iterative Numerical Methods for Mixed Volterra-Fredholm Integral Equations

被引:15
|
作者
Micula, Sanda [1 ]
机构
[1] Babes Bolyai Univ, Dept Math, Cluj Napoca 400084, Romania
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 10期
关键词
mixed Volterra-Fredholm integral equations; fixed-point theory; Picard iteration; numerical approximation; cubature formulas;
D O I
10.3390/sym11101200
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a class of simple numerical methods for approximating solutions of one-dimensional mixed Volterra-Fredholm integral equations of the second kind. These methods are based on fixed point results for the existence and uniqueness of the solution (results which also provide successive iterations of the solution) and suitable cubature formulas for the numerical approximations. We discuss in detail a method using Picard iteration and the two-dimensional composite trapezoidal rule, giving convergence conditions and error estimates. The paper concludes with numerical experiments and a discussion of the methods proposed.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Successive Numerical Scheme for Some Classes of Volterra-Fredholm Integral Equations
    Borzabadi, Akbar Hashemi
    Heidari, Mohammad
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2015, 10 (02): : 1 - 10
  • [2] ON MIXED VOLTERRA-FREDHOLM TYPE INTEGRAL-EQUATIONS
    PACHPATTE, BG
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1986, 17 (04): : 488 - 496
  • [3] A NUMERICAL SOLUTION OF NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
    Zarebnia, M.
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2013, 3 (01): : 95 - 104
  • [4] Numerical approaches for systems of Volterra-Fredholm integral equations
    Calio, F.
    Garralda-Guillem, A. I.
    Marchetti, E.
    Ruiz Galan, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 : 811 - 821
  • [5] A reliable treatment for mixed Volterra-Fredholm integral equations
    Wazwaz, AM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2002, 127 (2-3) : 405 - 414
  • [6] On the Numerical Solutions for Nonlinear Volterra-Fredholm Integral Equations
    Darania, Parviz
    Pishbin, Saeed
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [7] EXISTENCE OF SOLUTIONS FOR MIXED VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
    Aghajani, Asadollah
    Jalilian, Yaghoub
    Sadarangani, Kishin
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [8] A fast iterative method for discretized Volterra-Fredholm integral equations
    Cardone, A
    Messina, E
    Russo, E
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) : 568 - 579
  • [9] A meshless approximate solution of mixed Volterra-Fredholm integral equations
    Dastjerdi, H. Laeli
    Ghaini, F. M. Maalek
    Hadizadeh, M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (03) : 527 - 538
  • [10] Numerical approach based on Bernstein polynomials for solving mixed Volterra-Fredholm integral equations
    Khan, Faheem
    Mustafa, Ghulam
    Omar, Muhammad
    Komal, Haziqa
    [J]. AIP ADVANCES, 2017, 7 (12):